Skip to main content

Using FRAP or FRAPA to Visualize the Movement of Fluorescently Labeled Proteins or Cellular Organelles in Live Cultured Neurons Transformed with Adeno-Associated Viruses

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1474))

Abstract

Fluorescence recovery after photobleaching (FRAP) and fluorescence redistribution after photoactivation (FRAPA) are complementary methods used to gauge the movement of proteins or sub-resolution organelles within cells. Using these methods we can determine the nature of the movement of labeled particles, whether it is random, constrained, or active, the coefficient of diffusion if applicable, binding and unbinding constants, and the direction of active transport. These two techniques have been extensively utilized to probe the cell biology of neurons. A practical outline of FRAP and FRAPA in cultured neurons is presented, including the preparation of the neurons and their infection with adeno-associated viral vectors. Considerations in planning such experiments are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tam J, Merino D (2015) Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods. J Neurochem 135:643–658

    Article  CAS  PubMed  Google Scholar 

  2. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  3. Sun T, Qiao H, Pan PY, Chen Y, Sheng ZH (2013) Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep 4:413–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wong MY, Zhou C, Shakiryanova D, Lloyd TE, Deitcher DL, Levitan ES (2012) Neuropeptide delivery to synapses by long-range vesicle circulation and sporadic capture. Cell 148:1029–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Orenbuch A, Shalev L, Marra V, Sinai I, Lavy Y, Kahn J et al (2012) Synapsin selectively controls the mobility of resting pool vesicles at hippocampal terminals. J Neurosci 32:3969–3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Staras K, Mikulincer D, Gitler D (2013) Monitoring and quantifying dynamic physiological processes in live neurons using fluorescence recovery after photobleaching. J Neurochem 126:213–222

    Article  CAS  PubMed  Google Scholar 

  7. Bancaud A, Huet S, Rabut G, Ellenberg J (2010) Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells: Frap, photoactivation, photoconversion, and flip. Cold Spring Harb Protoc 2010:pdb top90

    Google Scholar 

  8. Berkovich R, Wolfenson H, Eisenberg S, Ehrlich M, Weiss M, Klafter J et al (2011) Accurate quantification of diffusion and binding kinetics of non-integral membrane proteins by FRAP. Traffic 12:1648–1657

    Article  CAS  PubMed  Google Scholar 

  9. Kang M, Day CA, Kenworthy AK, DiBenedetto E (2012) Simplified equation to extract diffusion coefficients from confocal FRAP data. Traffic 13:1589–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kang M, Andreani M, Kenworthy AK (2015) Validation of normalizations, scaling, and photofading corrections for FRAP data analysis. PLoS One 10:e0127966

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schmidt H, Brown EB, Schwaller B, Eilers J (2003) Diffusional mobility of parvalbumin in spiny dendrites of cerebellar purkinje neurons quantified by fluorescence recovery after photobleaching. Biophys J 84:2599–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scott DA, Das U, Tang Y, Roy S (2011) Mechanistic logic underlying the axonal transport of cytosolic proteins. Neuron 70:441–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang Y, Scott D, Das U, Gitler D, Ganguly A, Roy S (2013) Fast vesicle transport is required for the slow axonal transport of synapsin. J Neurosci 33:15362–15375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsuriel S, Geva R, Zamorano P, Dresbach T, Boeckers T, Gundelfinger ED et al (2006) Local sharing as a predominant determinant of synaptic matrix molecular dynamics. PLoS Biol 4:e271

    Article  PubMed  PubMed Central  Google Scholar 

  15. Staras K, Branco T, Burden JJ, Pozo K, Darcy K, Marra V et al (2010) A vesicle superpool spans multiple presynaptic terminals in hippocampal neurons. Neuron 66:37–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmidt H, Arendt O, Brown EB, Schwaller B, Eilers J (2007) Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar purkinje neurones. J Neurochem 100:727–735

    Article  CAS  PubMed  Google Scholar 

  17. Shulman Y, Stavsky A, Fedorova T, Mikulincer D, Atias M, Radinsky I et al (2015) Atp binding to synaspsin IIa regulates usage and clustering of vesicles in terminals of hippocampal neurons. J Neurosci 35:985–998

    Article  PubMed  Google Scholar 

  18. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    Article  CAS  PubMed  Google Scholar 

  19. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chudakov DM, Lukyanov S, Lukyanov KA (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins ps-cfp2 and dendra2. Nat Protoc 2:2024–2032

    Article  CAS  PubMed  Google Scholar 

  21. Roy S, Yang G, Tang Y, Scott DA (2011) A simple photoactivation and image analysis module for visualizing and analyzing axonal transport with high temporal resolution. Nat Protoc 7:62–68

    Article  PubMed  PubMed Central  Google Scholar 

  22. Royo NC, Vandenberghe LH, Ma JY, Hauspurg A, Yu L, Maronski M et al (2008) Specific AAV serotypes stably transduce primary hippocampal and cortical cultures with high efficiency and low toxicity. Brain Res 1190:15–22

    Article  CAS  PubMed  Google Scholar 

  23. Shevtsova Z, Malik JM, Michel U, Bahr M, Kugler S (2005) Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 90:53–59

    Article  CAS  PubMed  Google Scholar 

  24. Groh A, de Kock CP, Wimmer VC, Sakmann B, Kuner T (2008) Driver or coincidence detector: modal switch of a corticothalamic giant synapse controlled by spontaneous activity and short-term depression. J Neurosci 28:9652–9663

    Article  CAS  PubMed  Google Scholar 

  25. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18:80–86

    Article  CAS  PubMed  Google Scholar 

  26. Hirsch ML, Agbandje-McKenna M, Samulski RJ (2010) Little vector, big gene transduction: fragmented genome reassembly of adeno-associated virus. Mol Ther 18:6–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468

    CAS  Google Scholar 

  28. Tsibidis GD (2009) Quantitative interpretation of binding reactions of rapidly diffusing species using fluorescence recovery after photobleaching. J Microsc 233:384–390

    Article  CAS  PubMed  Google Scholar 

  29. Brown EB, Wu ES, Zipfel W, Webb WW (1999) Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys J 77:2837–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by Israel Science Foundation (ISF) grant 1427/12 (DG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Gitler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tevet, Y., Gitler, D. (2016). Using FRAP or FRAPA to Visualize the Movement of Fluorescently Labeled Proteins or Cellular Organelles in Live Cultured Neurons Transformed with Adeno-Associated Viruses. In: Schwartzbach, S., Skalli, O., Schikorski, T. (eds) High-Resolution Imaging of Cellular Proteins. Methods in Molecular Biology, vol 1474. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6352-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6352-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6350-8

  • Online ISBN: 978-1-4939-6352-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics