Skip to main content

Antibody Production with Synthetic Peptides

  • Protocol
  • First Online:
High-Resolution Imaging of Cellular Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1474))

Abstract

Peptides (usually 10–20 amino acid residues in length) can be used as effectively as proteins in raising antibodies producing both polyclonal and monoclonal antibodies routinely with titers higher than 20,000. Peptide antigens do not function as immunogens unless they are conjugated to proteins. Production of high quality antipeptide antibodies is dependent upon peptide sequence selection, the success of peptide synthesis, peptide–carrier protein conjugation, the humoral immune response in the host animal, the adjuvant used, the peptide dose administered, the injection method, and the purification of the antibody. Peptide sequence selection is probably the most critical step in the production of antipeptide antibodies. Although the process for designing peptide antigens is not exact, several guidelines and computational B-cell epitope prediction methods can help maximize the likelihood of producing antipeptide antibodies that recognize the protein. Antibodies raised by peptides have become essential tools in life science research. Virtually all phospho-specific antibodies are now produced using phosphopeptides as antigens. Typically, 5–20 mg of peptide is enough for antipeptide antibody production. It takes 3 months to produce a polyclonal antipeptide antibody in rabbits that yields ~100 mL of serum which corresponds to ~8–10 mg of the specific antibody after affinity purification using a peptide column.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howard GC, Kaser MR (eds) (2007) Making and using antibodies: a practical handbook. CRC Press, Taylor & Francis, Boca Raton, FL

    Google Scholar 

  2. Harlow DL (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  3. Rosenberg IM (1996) Protein analysis and purification benchtop techniques. Birkhauser, Boston

    Book  Google Scholar 

  4. Walker JM (ed) (2009) The protein protocols handbook. Humana Press, Totowa, NJ

    Google Scholar 

  5. Coligan JE, Kruisbeek AM, Margulies DH et al (1996) Current protocols in immunology, vol 2. John Wiley & Sons, New York, pp 9.0.1–9.8.15

    Google Scholar 

  6. Wisdom GB (ed) (1993) Peptide antigen: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  7. Delves PJ (1997) Antibody production essential techniques. John Wiley & Sons, New York

    Google Scholar 

  8. Archuleta AJ, Stutzke CA, Nixon KM et al (2011) Optimized protocol to make phospho-specific antibodies that work. Methods Mol Biol 717:69–88

    Article  CAS  Google Scholar 

  9. Arur S, Schedl T (2014) Generation and purification of highly specific antibodies for detecting post-translationally modified proteins in vivo. Nat Protoc 9:375–395

    Article  CAS  PubMed Central  Google Scholar 

  10. Teo CF, Ingale S, Wolfert MA et al (2010) Glycopeptide-specific monoclonal antibodies suggest new roles for O-GlcNAc. Nat Chem Biol 6:338–343

    Article  CAS  PubMed Central  Google Scholar 

  11. Yang J, Yan R, Roy A et al (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  CAS  PubMed Central  Google Scholar 

  12. Blythe MJ, Flower DR (2005) Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci 14:246–248

    Article  CAS  PubMed Central  Google Scholar 

  13. Gao J, Faraggi E, Zhou Y et al (2012) BEST: improved prediction of B-Cell epitopes from antigen sequences. PLoS One. doi:10.1371/journal.pone.0040104

    Google Scholar 

  14. Gao J, Kurgan L (2014) Computational prediction of B cell epitopes from antigen sequences. Methods Mol Biol 1184:197–215

    Article  Google Scholar 

  15. Sanne MM, Hensen SMM, Derksen M et al (2014) Multiplex peptide-based B cell epitope mapping. Methods Mol Biol 1184:295–308

    Article  Google Scholar 

  16. Huang J, He B, Zhou P (2014) Mimotope-based prediction of B-cell epitopes. Methods Mol Biol 1184:237–243

    Article  Google Scholar 

  17. Sun P, Ju H, Zhang B et al (2015) Conformational B-cell epitope prediction method based on antigen preprocessing and mimotopes analysis. Biomed Res Int. doi:10.1155/2015/257030

    Google Scholar 

  18. Tsigelny IF (ed) (2002) Protein structure prediction: bioinformatic approach. International University Line, La Jolla, CA

    Google Scholar 

  19. Benoiton NL (ed) (2006) Chemistry of peptide synthesis. Taylor & Francis, New York

    Google Scholar 

  20. Howl J (ed) (2005) Peptide synthesis and applications. Humana, Totowa, NJ

    Google Scholar 

  21. Kates SA, Albericio F (2000) Solid phase synthesis: a practical guide. Marcel Dekker, New York

    Google Scholar 

  22. Fields GB (1997) Solid-phase peptide synthesis. Academic Press, New York

    Google Scholar 

  23. Hermanson GT (2008) Bioconjugate techniques. Academic Press, San Diego, CA

    Google Scholar 

  24. Sommer J, Garbers C, Wolf J et al (2014) Alternative intronic polyadenylation generates the Interleukin-6 trans-signaling inhibitor sgp130-E10. J Biol Chem 289:22140–22150

    Article  CAS  PubMed Central  Google Scholar 

  25. Lateef S, Gupta S, Jayathilaka G et al (2007) An improved protocol of coupling synthetic peptides to KLH for antibody production using MBS as bifunctional linker. J Biomol Tech 18:173–176

    PubMed Central  Google Scholar 

  26. Posnett D, McGrath H, Tam JP (1988) A novel method for producing anti-peptide antibodies. J Biol Chem 263:285–288

    Google Scholar 

  27. Tam JP (1988) Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci U S A 85:5409–5413

    Article  CAS  PubMed Central  Google Scholar 

  28. Westermeier R (2001) Electrophoresis in practice. WILEY-VCH, Weinheim

    Google Scholar 

  29. Hames BD (1998) Electrophoresis of protein. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

We thank the support of the Research Resources Center at the University of Illinois at Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Shiang Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lee, BS., Huang, JS., Jayathilaka, L.P., Lee, J., Gupta, S. (2016). Antibody Production with Synthetic Peptides. In: Schwartzbach, S., Skalli, O., Schikorski, T. (eds) High-Resolution Imaging of Cellular Proteins. Methods in Molecular Biology, vol 1474. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6352-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6352-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6350-8

  • Online ISBN: 978-1-4939-6352-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics