Skip to main content

Imaging Synaptic Vesicle Exocytosis-Endocytosis with pH-Sensitive Fluorescent Proteins

  • Protocol
  • First Online:
High-Resolution Imaging of Cellular Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1474))

Abstract

The introduction of pHluorin, a pH-sensitive GFP, by Miesenbock and colleagues provided a versatile tool to studies of vesicle trafficking, in particular synaptic vesicle exocytosis and endocytosis. By tagging pHluorin to the luminal region of the synaptic vesicular protein synaptobrevin (also called VAMP, vesicle-associated membrane protein) or other synaptic vesicle-specific proteins such as the vesicular glutamate transporter-1, we are able to directly track synaptic vesicle endocytosis in response to stimuli in a molecularly specific manner. Here, we describe the process of imaging synaptic vesicle endocytosis in response to extracellular stimulation in dissociated neuronal cultures of hippocampal neurons obtained from rats—also applicable to mice—using pHluorin-tagged vesicular glutamate transporter-1 as a reporter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kavalali ET, Jorgensen EM (2014) Visualizing presynaptic function. Nat Neurosci 17:10–16

    Article  CAS  Google Scholar 

  2. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  CAS  Google Scholar 

  3. Zhu Y, Xu J, Heinemann SF (2009) Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron 61:397–411

    Article  CAS  PubMed Central  Google Scholar 

  4. Granseth B, Odermatt B, Royle SJ, Lagnado L (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51:773–786

    Article  CAS  Google Scholar 

  5. Voglmaier SM et al (2006) Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51:71–84

    Article  CAS  Google Scholar 

  6. Li H et al (2011) Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Front Mol Neurosci 4:34

    Article  PubMed Central  Google Scholar 

  7. Ramirez DM, Khvotchev M, Trauterman B, Kavalali ET (2012) Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 73:121–134

    Article  CAS  PubMed Central  Google Scholar 

  8. Raingo J et al (2012) VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat Neurosci 15:738–745

    Article  CAS  PubMed Central  Google Scholar 

  9. Sankaranarayanan S, De Angelis D, Rothman JE, Ryan TA (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79:2199–2208

    Article  CAS  PubMed Central  Google Scholar 

  10. Shaner NC et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  Google Scholar 

  11. Li Y, Tsien RW (2012) pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat Neurosci 15:1047–1053

    Article  CAS  PubMed Central  Google Scholar 

  12. Shen Y, Rosendale M, Campbell RE, Perrais D (2014) pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis. J Cell Biol 207:419–432

    Article  CAS  PubMed Central  Google Scholar 

  13. Gandhi SP, Stevens CF (2003) Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423:607–613

    Article  CAS  Google Scholar 

  14. Takamori S et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  CAS  Google Scholar 

  15. Leitz J, Kavalali ET (2014) Fast retrieval and autonomous regulation of single spontaneously recycling synaptic vesicles. Elife 3:e03658

    Article  PubMed Central  Google Scholar 

  16. Leitz J, Kavalali ET (2011) Ca(2)(+) influx slows single synaptic vesicle endocytosis. J Neurosci 31:16318–16326

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ege T. Kavalali Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Afuwape, O.A.T., Kavalali, E.T. (2016). Imaging Synaptic Vesicle Exocytosis-Endocytosis with pH-Sensitive Fluorescent Proteins. In: Schwartzbach, S., Skalli, O., Schikorski, T. (eds) High-Resolution Imaging of Cellular Proteins. Methods in Molecular Biology, vol 1474. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6352-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6352-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6350-8

  • Online ISBN: 978-1-4939-6352-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics