Advertisement

Fast Functional Germline and Epigenetic Assays in the Nematode Caenorhabditis elegans

  • Zachary Lundby
  • Jessica Camacho
  • Patrick AllardEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1473)

Abstract

Germ cells are unique in their ability to transfer traits and genetic information from one generation to the next. The proper development and integrity of their genome are therefore of utmost importance for the health of organisms and survival of species. Many features of mammalian germ cells, including their long development span and difficulty of access, present challenges for their study in the context of toxicity assays. In light of these barriers, the model system Caenorhabditis elegans shows great potential given its ease of manipulation and genetic tractability which can be easily adapted for high-throughput analysis. In this chapter, we discuss the advantages of examining germ cell processes in C. elegans, and describe three functional germline assays for the examination of chemical impact on germline maintenance and function including assays probing germ cell differentiation, germline apoptosis, and germline epigenetic regulation.

Key words

C. elegans Germline Meiosis Toxicity Apoptosis 

References

  1. 1.
    Macrae R (2014) On the shoulders of worms. Trends Genet 30(11):475–475CrossRefPubMedGoogle Scholar
  2. 2.
    de Chadarevian S (1998) Of worms and programmes: Caenorhabditis elegans and the study of development. Stud Hist Phil Biol Biomed Sci 29(1):81–105CrossRefGoogle Scholar
  3. 3.
    Brenner S (2009) In the beginning was the worm …. Genetics 182(2):413–415CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106(1):5–28CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94PubMedPubMedCentralGoogle Scholar
  6. 6.
    Parodi DA, Damoiseaux R, Allard P (2015) Comprehensive assessment of germline chemical toxicity using the nematode Caenorhabditis elegans. J Vis Exp 96Google Scholar
  7. 7.
    Boyd WA, McBride SJ, Rice JR, Snyder DW, Freedman JH (2010) A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol Appl Pharmacol 245(2):153–159CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Greenstein D (2005) Control of oocyte meiotic maturation and fertilization. WormBook 1-12Google Scholar
  9. 9.
    Colaiacovo MP (2006) The many facets of SC function during C. elegans meiosis. Chromosoma 115(3):195–211CrossRefPubMedGoogle Scholar
  10. 10.
    Zhou Z, Hartwieg E, Horvitz HR (2001) CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104(1):43–56CrossRefPubMedGoogle Scholar
  11. 11.
    Bhalla N, Dernburg AF (2005) A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis elegans. Science 310(5754):1683–1686CrossRefPubMedGoogle Scholar
  12. 12.
    Gartner A, Boag PR, Blackwell TK (2008) Germline survival and apoptosis. WormBook 1-20Google Scholar
  13. 13.
    Gartner A, MacQueen AJ, Villeneuve AM (2004) Methods for analyzing checkpoint responses in Caenorhabditis elegans. Methods Mol Biol 280:257–274, doi: 1-59259-788-2:257PubMedGoogle Scholar
  14. 14.
    Kelly WG (2014) Transgenerational epigenetics in the germline cycle of Caenorhabditis elegans. Epigenetics Chromatin 7(1):6CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li T, Kelly WG (2011) A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line. PLoS Genet 7(3), e1001349CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schaner CE, Kelly WG (2006) Germline chromatin. WormBook 1–14Google Scholar
  17. 17.
    Kelly WG, Xu S, Montgomery MK, Fire A (1997) Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. Genetics 146(1):227–238PubMedPubMedCentralGoogle Scholar
  18. 18.
    Allard P, Kleinstreuer NC, Knudsen TB, Colaiacovo MP (2013) A C. elegans screening platform for the rapid assessment of chemical disruption of germline function. Environ Health Perspect 121(6):717–724CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Parodi DA, Sjarif J, Chen Y, Allard P (2015) Reproductive toxicity and meiotic dysfunction following exposure to the pesticides Maneb, Diazinon and Fenarimol. Toxicol Res 4(3):645–654CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zachary Lundby
    • 1
  • Jessica Camacho
    • 1
  • Patrick Allard
    • 2
    Email author
  1. 1.Society & Genetics, Environmental Health Sciences, and Molecular Toxicology Inter-Departmental ProgramUniversity of California Los AngelesLos AngelesUSA
  2. 2.The Allard LaboratoryUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations