Better, Faster, Cheaper: Getting the Most Out of High-Throughput Screening with Zebrafish

  • Lisa Truong
  • Michael T. Simonich
  • Robert L. TanguayEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1473)


The field of toxicology is undergoing a vast change with high-throughput (HT) approaches that rapidly query huge swaths of chemico-structural space for bioactivity and hazard potential. Its practicality is due in large part to switching from high-cost, low-throughput mammalian models to faster and cheaper alternatives. We believe this is an improved approach because the immense breadth of the resulting data sets a foundation for predictive structure–activity-based toxicology. Moreover, rapidly uncovering structure-related bioactivity drives better decisions about where to commit resources to drill down to a mechanism, or pursue commercial leads. While hundreds of different in vitro toxicology assays can collectively serve as an alternative to mammalian animal model testing, far greater efficiency and ultimately more relevant data are obtained from the whole animal. The developmental zebrafish, with its well-documented advantages over many animal models, is now emerging as a true biosensor of chemical activity. Herein, we draw on nearly a decade of experience developing high-throughput toxicology screens in the developmental zebrafish to summarize the best practices in fulfilling the better, faster, cheaper goals. We include optimization and harmonization of dosing volume, exposure paradigms, chemical solubility, chorion status, experimental duration, endpoint definitions, and statistical analysis.

Key words

Zebrafish High-throughput screening Toxicity testing 


  1. 1.
    Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, Kavlock RJ (2007) The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95(1):5–12. doi: 10.1093/toxsci/kfl103, kfl103 [pii]CrossRefPubMedGoogle Scholar
  2. 2.
    Truong L, Harper SL, Tanguay RL (2011) Evaluation of embryotoxicity using the zebrafish model. Methods Mol Biol 691:271–279. doi: 10.1007/978-1-60761-849-2_16 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Truong L, Reif DM, St Mary L, Geier MC, Truong HD, Tanguay RL (2014) Multidimensional in vivo hazard assessment using zebrafish. Toxicol Sci 137(1):212–233. doi: 10.1093/toxsci/kft235 CrossRefGoogle Scholar
  4. 4.
    Reif DM, Truong L, Mandrell D, Marvel S, Zhang G, Tanguay RL (2015) High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Arch Toxicol. doi: 10.1007/s00204-015-1554-1 PubMedCentralGoogle Scholar
  5. 5.
    OECD Test No. 236: Fish Embryo Acute Toxicity (FET) test. OECDGoogle Scholar
  6. 6.
    Corning (2006) Surface areas and recommended medium volumes for Corning cell culture vessels. Corning, New York; Corning IncorporatedGoogle Scholar
  7. 7.
    Padilla S, Corum D, Padnos B, Hunter DL, Beam A, Houck KA, Sipes N, Kleinstreuer N, Knudsen T, Dix DJ, Reif DM (2012) Zebrafish developmental screening of the ToxCast Phase I chemical library. Reprod Toxicol 33(2):174–187. doi: 10.1016/j.reprotox.2011.10.018 CrossRefPubMedGoogle Scholar
  8. 8.
    Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310. doi: 10.1002/aja.1002030302 CrossRefPubMedGoogle Scholar
  9. 9.
    Kim KT, Tanguay RL (2014) The role of chorion on toxicity of silver nanoparticles in the embryonic zebrafish assay. Environ Health Toxicol 29:e2014021. doi: 10.5620/eht.e2014021 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Panzica-Kelly JM, Zhang CX, Augustine-Rauch KA (2015) Optimization and performance assessment of the chorion-off [dechorinated] zebrafish developmental toxicity assay. Toxicol Sci 146(1):127–134. doi: 10.1093/toxsci/kfv076 CrossRefPubMedGoogle Scholar
  11. 11.
    Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XH (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1(2):133–143. doi: 10.1021/nn700048y CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Westerfield M (2007) The Zebrafish book. a guide for the laboratory use of zebrafish (Danio rerio), 5th edn. University of Oregon Press, Eugene, ORGoogle Scholar
  13. 13.
    Fries E, Zarfl C (2012) Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE). Environ Sci Pollut Res Int 19(4):1296–1304. doi: 10.1007/s11356-011-0655-5 CrossRefPubMedGoogle Scholar
  14. 14.
    Jones R, Zheng W, McKew JC, Chen CZ (2013) An alternative direct compound dispensing method using the HP D300 digital dispenser. J Lab Automat 18(5):367–374. doi: 10.1177/2211068213491094 CrossRefGoogle Scholar
  15. 15.
    Hadimioglu B, Stearns R, Ellson R (2015) Moving liquids with sound: the physics of acoustic droplet ejection for robust laboratory automation in life sciences. J Lab Automat. doi: 10.1177/2211068215615096 Google Scholar
  16. 16.
    HP (2012) Reinventing drug titration for IC50 determinations. Corvallis, Oregon: Tecan Publisher. In: HP D300 Digital Dispenser—White PaperGoogle Scholar
  17. 17.
    Goldstone J, McArthur A, Kubota A, Zanette J, Parente T, Jonsson M, Nelson D, Stegeman J (2010) Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish. BMC Genomics 11(1):643CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vliegenthart AD, Tucker CS, Del Pozo J, Dear JW (2014) Zebrafish as model organisms for studying drug-induced liver injury. Br J Clin Pharmacol 78(6):1217–1227. doi: 10.1111/bcp.12408 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen TH, Wang YH, Wu YH (2011) Developmental exposures to ethanol or dimethylsulfoxide at low concentrations alter locomotor activity in larval zebrafish: implications for behavioral toxicity bioassays. Aquat Toxicol 102(3-4):162–166. doi: 10.1016/j.aquatox.2011.01.010 CrossRefPubMedGoogle Scholar
  20. 20.
    Ellson R, Stearns R, Mutz M, Brown C, Browning B, Harris D, Qureshi S, Shieh J, Wold D (2005) In situ DMSO hydration measurements of HTS compound libraries. Comb Chem High Throughput Screen 8(6):489–498CrossRefPubMedGoogle Scholar
  21. 21.
    George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, Wang X, Zhang H, France B, Schoenfeld D, Damoiseaux R, Liu R, Bradley KA, Cohen Y, Nel AE (2011) Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5(3):1805–1817. doi: 10.1021/nn102734s CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yozzo KL, Isales GM, Raftery TD, Volz DC (2013) High-content screening assay for identification of chemicals impacting cardiovascular function in zebrafish embryos. Environ Sci Technol 47(19):11302–11310. doi: 10.1021/es403360y CrossRefPubMedGoogle Scholar
  23. 23.
    Kim KT, Truong L, Wehmas L, Tanguay RL (2013) Silver nanoparticle toxicity in the embryonic zebrafish is governed by particle dispersion and ionic environment. Nanotechnology 24(11):115101. doi: 10.1088/0957-4484/24/11/115101 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Knecht AL, Goodale BC, Truong L, Simonich MT, Swanson AJ, Matzke MM, Anderson KA, Waters KM, Tanguay RL (2013) Comparative developmental toxicity of environmentally relevant oxygenated PAHs. Toxicol Appl Pharmacol 271(2):266–275. doi: 10.1016/j.taap.2013.05.006 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lisa Truong
    • 1
    • 2
  • Michael T. Simonich
    • 1
    • 2
  • Robert L. Tanguay
    • 1
    • 2
    Email author
  1. 1.Department of Environmental and Molecular ToxicologyOregon State UniversityCorvallisUSA
  2. 2.The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences CenterOregon State UniversityCorvallisUSA

Personalised recommendations