Skip to main content

Genetic Approaches to Study Meiosis and Meiosis-Specific Gene Expression in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1471))

Abstract

The budding yeast Saccharomyces cerevisiae has a long history as a model organism for studies of meiosis and the cell cycle. The popularity of this yeast as a model is in large part due to the variety of genetic and cytological approaches that can be effectively performed with the cells. Cultures of the cells can be induced to synchronously progress through meiosis and sporulation allowing large-scale gene expression and biochemical studies to be performed. Additionally, the spore tetrads resulting from meiosis make it possible to characterize the haploid products of meiosis allowing investigation of meiotic recombination and chromosome segregation. Here we describe genetic methods for analysis progression of S. cerevisiae through meiosis and sporulation with an emphasis on strategies for the genetic analysis of regulators of meiosis-specific genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I (1998) The transcriptional program of sporulation in budding yeast. Science 282(5389):699–705

    Article  CAS  PubMed  Google Scholar 

  2. Kassir Y, Adir N, Boger-Nadjar E, Raviv NG, Rubin-Bejerano I, Sagee S, Shenhar G (2003) Transcriptional regulation of meiosis in budding yeast. Int Rev Cytol 224:111–171

    Article  CAS  PubMed  Google Scholar 

  3. Primig M, Williams RM, Winzeler EA, Tevzadze GG, Conway AR, Hwang SY, Davis RW, Esposito RE (2000) The core meiotic transcriptome in budding yeasts. Nat Genet 26(4):415–423. doi:10.1038/82539

    Article  CAS  PubMed  Google Scholar 

  4. Malone RE, Esposito RE (1981) Recombinationless meiosis in Saccharomyces cerevisiae. Mol Cell Biol 1(10):891–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lydall D, Nikolsky Y, Bishop DK, Weinert T (1996) A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383(6603):840–843. doi:10.1038/383840a0

    Article  CAS  PubMed  Google Scholar 

  6. Padmore R, Cao L, Kleckner N (1991) Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66(6):1239–1256

    Article  CAS  PubMed  Google Scholar 

  7. Matsuura A, Treinin M, Mitsuzawa H, Kassir Y, Uno I, Simchen G (1990) The adenylate cyclase/protein kinase cascade regulates entry into meiosis in Saccharomyces cerevisiae through the gene IME1. EMBO J 9(10):3225–3232

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Biss M, Hanna MD, Xiao W (2014) Isolation of yeast nucleic acids. Methods Mol Biol 1163:15–21. doi:10.1007/978-1-4939-0799-1_2

    Article  CAS  PubMed  Google Scholar 

  9. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):3273–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sagee S, Sherman A, Shenhar G, Robzyk K, Ben-Doy N, Simchen G, Kassir Y (1998) Multiple and distinct activation and repression sequences mediate the regulated transcription of IME1, a transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae. Mol Cell Biol 18(4):1985–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kahana S, Pnueli L, Kainth P, Sassi HE, Andrews B, Kassir Y (2010) Functional dissection of IME1 transcription using quantitative promoter-reporter screening. Genetics 186(3):829–841. doi:10.1534/genetics.110.122200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kunz BA, Pierce MK, Mis JR, Giroux CN (1987) DNA sequence analysis of the mutational specificity of u.v. light in the SUP4-o gene of yeast. Mutagenesis 2(6):445–453

    Article  CAS  PubMed  Google Scholar 

  13. Kassir Y, Simchen G (1985) Mutations leading to expression of the cryptic HMRa locus in the yeast Saccharomyces cerevisiae. Genetics 109(3):481–492

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jensen RE, Herskowitz I (1984) Directionality and regulation of cassette substitution in yeast. Cold Spring Harb Symp Quant Biol 49:97–104

    Article  CAS  PubMed  Google Scholar 

  15. Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10(13):1793–1808

    Article  CAS  PubMed  Google Scholar 

  16. Madhani HD, Styles CA, Fink GR (1997) MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91(5):673–684

    Article  CAS  PubMed  Google Scholar 

  17. Stevenson BJ, Rhodes N, Errede B, Sprague GF Jr (1992) Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. Genes Dev 6(7):1293–1304

    Article  CAS  PubMed  Google Scholar 

  18. Elrod SL, Chen SM, Schwartz K, Shuster EO (2009) Optimizing sporulation conditions for different Saccharomyces cerevisiae strain backgrounds. Methods Mol Biol 557:21–26. doi:10.1007/978-1-59745-527-5_2

    Article  CAS  PubMed  Google Scholar 

  19. Sancar GB (2000) Enzymatic photoreactivation: 50 years and counting. Mutat Res 451(1-2):25–37

    Article  CAS  PubMed  Google Scholar 

  20. Rose MD, Broach JR (1991) Cloning genes by complementation in yeast. Methods Enzymol 194:195–230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.T.S. acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC) for research support from Discovery Grant numbers 03673 and 262070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yona Kassir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kassir, Y., Stuart, D.T. (2017). Genetic Approaches to Study Meiosis and Meiosis-Specific Gene Expression in Saccharomyces cerevisiae . In: Stuart, D. (eds) Meiosis. Methods in Molecular Biology, vol 1471. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6340-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6340-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6338-6

  • Online ISBN: 978-1-4939-6340-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics