Skip to main content

Data Analysis for High-Throughput RNAi Screening

  • Protocol
  • First Online:
High-Throughput RNAi Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1470))

Abstract

High-throughput RNA interference (HT-RNAi) screening is an effective technology to help identify important genes and pathways involved in a biological process. Analysis of high-throughput RNAi screening data is a critical part of this technology, and many analysis methods have been described. Here, we summarize the workflow and types of analyses commonly used in high-throughput RNAi screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aza-Blanc P, Cooper CL, Wagner K, Batalov S, Deveraux QL, Cooke MP (2003) Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell 12(3):627–637

    Article  CAS  PubMed  Google Scholar 

  2. Willingham AT, Deveraux QL, Hampton GM, Aza-Blanc P (2004) RNAi and HTS: exploring cancer by systematic loss-of-function. Oncogene 23(51):8392–8400. doi:10.1038/sj.onc.1208217

    Article  CAS  PubMed  Google Scholar 

  3. Mohr SE, Smith JA, Shamu CE, Neumuller RA, Perrimon N (2014) RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15(9):591–600. doi:10.1038/nrm3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iorns E, Lord CJ, Turner N, Ashworth A (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 6(7):556–568. doi:10.1038/nrd2355

    Article  CAS  PubMed  Google Scholar 

  5. Falschlehner C, Steinbrink S, Erdmann G, Boutros M (2010) High-throughput RNAi screening to dissect cellular pathways: a how-to guide. Biotechnol J 5(4):368–376. doi:10.1002/biot.200900277

    Article  CAS  PubMed  Google Scholar 

  6. Mullenders J, Bernards R (2009) Loss-of-function genetic screens as a tool to improve the diagnosis and treatment of cancer. Oncogene 28(50):4409–4420. doi:10.1038/onc.2009.295

    Article  CAS  PubMed  Google Scholar 

  7. Echeverri CJ, Perrimon N (2006) High-throughput RNAi screening in cultured cells: a user’s guide. Nat Rev Genet 7(5):373–384. doi:10.1038/nrg1836

    Article  CAS  PubMed  Google Scholar 

  8. Brideau C, Gunter B, Pikounis B, Liaw A (2003) Improved statistical methods for hit selection in high-throughput screening. J Biomol Screen 8(6):634–647. doi:10.1177/1087057103258285

    Article  PubMed  Google Scholar 

  9. Gunter B, Brideau C, Pikounis B, Liaw A (2003) Statistical and graphical methods for quality control determination of high-throughput screening data. J Biomol Screen 8(6):624–633. doi:10.1177/1087057103258284

    Article  PubMed  Google Scholar 

  10. Boutros M, Bras LP, Huber W (2006) Analysis of cell-based RNAi screens. Genome Biol 7(7):R66. doi:10.1186/gb-2006-7-7-R66

    Article  PubMed  PubMed Central  Google Scholar 

  11. Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R (2006) Statistical practice in high-throughput screening data analysis. Nat Biotechnol 24(2):167–175. doi:10.1038/nbt1186

    Article  CAS  PubMed  Google Scholar 

  12. Zhang XD, Yang XC, Chung N, Gates A, Stec E, Kunapuli P, Holder DJ, Ferrer M, Espeseth AS (2006) Robust statistical methods for hit selection in RNA interference high-throughput screening experiments. Pharmacogenomics 7(3):299–309. doi:10.2217/14622416.7.3.299

    Article  CAS  PubMed  Google Scholar 

  13. Konig R, Chiang CY, Tu BP, Yan SF, DeJesus PD, Romero A, Bergauer T, Orth A, Krueger U, Zhou Y, Chanda SK (2007) A probability-based approach for the analysis of large-scale RNAi screens. Nat Methods 4(10):847–849. doi:10.1038/nmeth1089

    Article  PubMed  Google Scholar 

  14. Chung N, Zhang XD, Kreamer A, Locco L, Kuan PF, Bartz S, Linsley PS, Ferrer M, Strulovici B (2008) Median absolute deviation to improve hit selection for genome-scale RNAi screens. J Biomol Screen 13(2):149–158. doi:10.1177/1087057107312035

    Article  CAS  PubMed  Google Scholar 

  15. Zhang XD (2011) Optimal high-throughput screening: practical experimental design and data analysis for genome-scale RNAi research. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Vaux DL, Fidler F, Cumming G (2012) Replicates and repeats—what is the difference and is it significant? A brief discussion of statistics and experimental design. EMBO Rep 13(4):291–296. doi:10.1038/embor.2012.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9(7):554–566. doi:10.1038/nrg2364

    Article  CAS  PubMed  Google Scholar 

  18. Birmingham A, Selfors LM, Forster T, Wrobel D, Kennedy CJ, Shanks E, Santoyo-Lopez J, Dunican DJ, Long A, Kelleher D, Smith Q, Beijersbergen RL, Ghazal P, Shamu CE (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6(8):569–575. doi:10.1038/nmeth.1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang XD (2007) A pair of new statistical parameters for quality control in RNA interference high-throughput screening assays. Genomics 89(4):552–561. doi:10.1016/j.ygeno.2006.12.014

    Article  CAS  PubMed  Google Scholar 

  20. Zhang XD (2008) Novel analytic criteria and effective plate designs for quality control in genome-scale RNAi screens. J Biomol Screen 13(5):363–377. doi:10.1177/1087057108317062

    Article  CAS  PubMed  Google Scholar 

  21. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73

    Article  PubMed  Google Scholar 

  22. Zhang XD (2011) Illustration of SSMD, z score, SSMD*, z* score, and t statistic for hit selection in RNAi high-throughput screens. J Biomol Screen 16(7):775–785. doi:10.1177/1087057111405851

    Article  PubMed  Google Scholar 

  23. Rieber N, Knapp B, Eils R, Kaderali L (2009) RNAither, an automated pipeline for the statistical analysis of high-throughput RNAi screens. Bioinformatics 25(5):678–679. doi:10.1093/bioinformatics/btp014

    Article  CAS  PubMed  Google Scholar 

  24. Pelz O, Gilsdorf M, Boutros M (2010) web cellHTS2: a web-application for the analysis of high-throughput screening data. BMC Bioinformatics 11:185. doi:10.1186/1471-2105-11-185

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goktug AN, Ong SS, Chen T (2012) GUItars: a GUI tool for analysis of high-throughput RNA interference screening data. PLoS One 7(11), e49386. doi:10.1371/journal.pone.0049386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang XD, Lacson R, Yang R, Marine SD, McCampbell A, Toolan DM, Hare TR, Kajdas J, Berger JP, Holder DJ, Heyse JF, Ferrer M (2010) The use of SSMD-based false discovery and false nondiscovery rates in genome-scale RNAi screens. J Biomol Screen 15(9):1123–1131. doi:10.1177/1087057110381919

    Article  CAS  PubMed  Google Scholar 

  27. Tiedemann RE, Zhu YX, Schmidt J, Yin H, Shi CX, Que Q, Basu G, Azorsa D, Perkins LM, Braggio E, Fonseca R, Bergsagel PL, Mousses S, Stewart AK (2010) Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-restricted kinase, GRK6. Blood 115(8):1594–1604. doi:10.1182/blood-2009-09-243980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arora S, Bisanz KM, Peralta LA, Basu GD, Choudhary A, Tibes R, Azorsa DO (2010) RNAi screening of the kinome identifies modulators of cisplatin response in ovarian cancer cells. Gynecol Oncol 118(3):220–227. doi:10.1016/j.ygyno.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  29. Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A, Heuer D, Becker D, Khalil H, Ogilvie LA, Hess S, Maurer AP, Muller E, Wolff T, Rudel T, Meyer TF (2010) Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463(7282):818–822. doi:10.1038/nature08760

    Article  CAS  PubMed  Google Scholar 

  30. Dobbelaere J, Josue F, Suijkerbuijk S, Baum B, Tapon N, Raff J (2008) A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLoS Biol 6(9), e224. doi:10.1371/journal.pbio.0060224

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang XD (2007) A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays. J Biomol Screen 12(5):645–655. doi:10.1177/1087057107300645

    Article  CAS  PubMed  Google Scholar 

  32. Zhang XD, Ferrer M, Espeseth AS, Marine SD, Stec EM, Crackower MA, Holder DJ, Heyse JF, Strulovici B (2007) The use of strictly standardized mean difference for hit selection in primary RNA interference high-throughput screening experiments. J Biomol Screen 12(4):497–509. doi:10.1177/1087057107300646

    Article  CAS  PubMed  Google Scholar 

  33. Gagarin A, Makarenkov V, Zentilli P (2006) Using clustering techniques to improve hit selection in high-throughput screening. J Biomol Screen 11(8):903–914. doi:10.1177/1087057106293590

    Article  PubMed  Google Scholar 

  34. Nickles D, Falschlehner C, Metzig M, Boutros M (2012) A genome-wide RNA interference screen identifies caspase 4 as a factor required for tumor necrosis factor alpha signaling. Mol Cell Biol 32(17):3372–3381. doi:10.1128/MCB.06739-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arora S, Gonzales IM, Hagelstrom RT, Beaudry C, Choudhary A, Sima C, Tibes R, Mousses S, Azorsa DO (2010) RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing’s sarcoma. Mol Cancer 9:218. doi:10.1186/1476-4598-9-218

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fisher KH, Wright VM, Taylor A, Zeidler MP, Brown S (2012) Advances in genome-wide RNAi cellular screens: a case study using the Drosophila JAK/STAT pathway. BMC Genomics 13:506. doi:10.1186/1471-2164-13-506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, Peyton M, Minna JD, Michnoff C, Hao W, Roth MG, Xie XJ, White MA (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446(7137):815–819. doi:10.1038/nature05697

    Article  CAS  PubMed  Google Scholar 

  38. Yu J, Putcha P, Califano A, Silva JM (2013) Pooled shRNA screenings: computational analysis. Methods Mol Biol 980:371–384. doi:10.1007/978-1-62703-287-2_22

    Article  CAS  PubMed  Google Scholar 

  39. Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32 Suppl:496–501. doi:10.1038/ng1032

    Google Scholar 

  40. Sims D, Mendes-Pereira AM, Frankum J, Burgess D, Cerone MA, Lombardelli C, Mitsopoulos C, Hakas J, Murugaesu N, Isacke CM, Fenwick K, Assiotis I, Kozarewa I, Zvelebil M, Ashworth A, Lord CJ (2011) High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing. Genome Biol 12(10):R104. doi:10.1186/gb-2011-12-10-r104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marcotte R, Brown KR, Suarez F, Sayad A, Karamboulas K, Krzyzanowski PM, Sircoulomb F, Medrano M, Fedyshyn Y, Koh JL, van Dyk D, Fedyshyn B, Luhova M, Brito GC, Vizeacoumar FJ, Vizeacoumar FS, Datti A, Kasimer D, Buzina A, Mero P, Misquitta C, Normand J, Haider M, Ketela T, Wrana JL, Rottapel R, Neel BG, Moffat J (2012) Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov 2(2):172–189. doi:10.1158/2159-8290.CD-11-0224

    Article  CAS  PubMed  Google Scholar 

  42. Kimura J, Nguyen ST, Liu H, Taira N, Miki Y, Yoshida K (2008) A functional genome-wide RNAi screen identifies TAF1 as a regulator for apoptosis in response to genotoxic stress. Nucleic Acids Res 36(16):5250–5259. doi:10.1093/nar/gkn506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Diehl P, Tedesco D, Chenchik A (2014) Use of RNAi screens to uncover resistance mechanisms in cancer cells and identify synthetic lethal interactions. Drug Discov Today Technol 11:11–18. doi:10.1016/j.ddtec.2013.12.002

    Article  PubMed  Google Scholar 

  44. Gobeil S, Zhu X, Doillon CJ, Green MR (2008) A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene. Genes Dev 22(21):2932–2940. doi:10.1101/gad.1714608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gazin C, Wajapeyee N, Gobeil S, Virbasius CM, Green MR (2007) An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 449(7165):1073–1077. doi:10.1038/nature06251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Turner NC, Lord CJ, Iorns E, Brough R, Swift S, Elliott R, Rayter S, Tutt AN, Ashworth A (2008) A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J 27(9):1368–1377. doi:10.1038/emboj.2008.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bogenberger JM, Kornblau SM, Pierceall WE, Lena R, Chow D, Shi CX, Mantei J, Ahmann G, Gonzales IM, Choudhary A, Valdez R, Camoriano J, Fauble V, Tiedemann RE, Qiu YH, Coombes KR, Cardone M, Braggio E, Yin H, Azorsa DO, Mesa RA, Stewart AK, Tibes R (2014) BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies. Leukemia 28(8):1657–1665. doi:10.1038/leu.2014.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Azorsa DO, Gonzales IM, Basu GD, Choudhary A, Arora S, Bisanz KM, Kiefer JA, Henderson MC, Trent JM, Von Hoff DD, Mousses S (2009) Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer. J Transl Med 7:43. doi:10.1186/1479-5876-7-43

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ye F, Bauer JA, Pietenpol JA, Shyr Y (2012) Analysis of high-throughput RNAi screening data in identifying genes mediating sensitivity to chemotherapeutic drugs: statistical approaches and perspectives. BMC Genomics 13 Suppl 8:S3. doi:10.1186/1471-2164-13-S8-S3

  50. Zhu YX, Tiedemann R, Shi CX, Yin H, Schmidt JE, Bruins LA, Keats JJ, Braggio E, Sereduk C, Mousses S, Stewart AK (2011) RNAi screen of the druggable genome identifies modulators of proteasome inhibitor sensitivity in myeloma including CDK5. Blood 117(14):3847–3857. doi:10.1182/blood-2010-08-304022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harradine KA, Kassner M, Chow D, Aziz M, Von Hoff DD, Baker JB, Yin H, Pelham RJ (2011) Functional genomics reveals diverse cellular processes that modulate tumor cell response to oxaliplatin. Mol Cancer Res 9(2):173–182. doi:10.1158/1541-7786.MCR-10-0412

    Article  CAS  PubMed  Google Scholar 

  52. Kumar P, Goh G, Wongphayak S, Moreau D, Bard F (2013) ScreenSifter: analysis and visualization of RNAi screening data. BMC Bioinformatics 14:290. doi:10.1186/1471-2105-14-290

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Daniel H. Wai for his valuable contribution in preparing the heat map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David O. Azorsa Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Azorsa, D.O., Turnidge, M.A., Arora, S. (2016). Data Analysis for High-Throughput RNAi Screening. In: Azorsa, D., Arora, S. (eds) High-Throughput RNAi Screening. Methods in Molecular Biology, vol 1470. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6337-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6337-9_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6335-5

  • Online ISBN: 978-1-4939-6337-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics