Skip to main content

Behavioral Testing in Rodent Models of Stroke, Part II

  • Protocol
  • First Online:
Rodent Models of Stroke

Part of the book series: Neuromethods ((NM,volume 120))

Abstract

The critical test of a therapeutic intervention is whether it affects clinically relevant outcomes. Therefore, a vital part of preclinical stroke research includes the use of reliable tests of functional outcome. This chapter presents select behavioral tests commonly used for evaluating somatosensory, locomotor, and skilled and cognitive functions in rodent models of stroke. The methods described emphasize the value of careful quantitative and qualitative assessment of acute and long-term behavioral deficits. Some of the protocols presented allow us to determine whether a preclinical treatment restores the original function or simply enhances performance by improving the learning of alternative strategies. Recommendations are given to assist the reader in the choice of individual tests to develop a test battery for the assessment of chronic deficits and functional improvements in rodent models of experimental stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rose L, Bakal DA, Fung TS, Farn P, Weaver LE (1994) Tactile extinction and functional status after stroke. Stroke 25:1973–1976

    Article  CAS  PubMed  Google Scholar 

  2. Schallert T, Whishaw IQ (1984) Bilateral cutaneous stimulation of the somatosensory system in hemidecorticate rats. Behav Neurosci 98:518–540

    Article  CAS  PubMed  Google Scholar 

  3. Hines DJ, Haydon PG (2013) Inhibition of a SNARE-sensitive pathway in astrocytes attenuates damage following stroke. J Neurosci 33:4234–4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  CAS  PubMed  Google Scholar 

  5. Schallert T, Upchurch M, Lobaugh N, Farrar SB, Spirduso WW, Gilliam P, Vaughn D, Wilcox RE (1982) Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol Biochem Behav 16:455–462

    Article  CAS  PubMed  Google Scholar 

  6. Kadam SD, Mulholland JD, Smith DR, Johnston MV, Comi AM (2009) Chronic brain injury and behavioral impairments in a mouse model of term neonatal strokes. Behav Brain Res 197:77–83

    Article  PubMed  Google Scholar 

  7. Gharbawie OA, Whishaw PA, Whishaw IQ (2004) The topography of three-dimensional exploration: a new quantification of vertical and horizontal exploration, postural support, and exploratory bouts in the cylinder test. Behav Brain Res 151:125–135

    Article  PubMed  Google Scholar 

  8. Schallert T, Woodlee MT, Fleming SM (2002) Disentangling multiple types of recovery from brain injury. In: Krieglstein J, Klumpp S (eds) Pharmacology of cerebral ischemia. Medpharm Scientific, Stuttgart

    Google Scholar 

  9. van Groen T, Puurunen K, Maki HM, Sivenius J, Jolkkonen J (2005) Transformation of diffuse beta-amyloid precursor protein and beta-amyloid deposits to plaques in the thalamus after transient occlusion of the middle cerebral artery in rats. Stroke 36:1551–1556

    Article  PubMed  Google Scholar 

  10. Zhao CS, Puurunen K, Schallert T, Sivenius J, Jolkkonen J (2005) Effect of cholinergic medication, before and after focal photothrombotic ischemic cortical injury, on histological and functional outcome in aged and young adult rats. Behav Brain Res 156:85–94

    Article  CAS  PubMed  Google Scholar 

  11. Kolb B, Tomie JA (1988) Recovery from early cortical damage in rats. IV. Effects of hemidecortication at 1, 5 or 10 days of age on cerebral anatomy and behavior. Behav Brain Res 28:259–274

    Article  CAS  PubMed  Google Scholar 

  12. Stoltz S, Humm JL, Schallert T (1999) Cortical injury impairs contralateral forelimb immobility during swimming: a simple test for loss of inhibitory motor control. Behav Brain Res 106:127–132

    Article  CAS  PubMed  Google Scholar 

  13. Schapiro S, Salas M, Vukovich K (1970) Hormonal effects on ontogeny of swimming ability in the rat: assessment of central nervous system development. Science 168:147–150

    Article  CAS  PubMed  Google Scholar 

  14. Kolb B, Whishaw IQ (1983) Dissociation of the contributions of the prefrontal, motor, and parietal cortex to the control of movement in the rat: an experimental review. Can J Psychol 37:211–232

    Article  CAS  PubMed  Google Scholar 

  15. Whishaw IQ (2004) Prehension. In: Whishaw IQ, Kolb B (eds) The behavior of the laboratory rat. Oxford University Press, pp 162–170

    Google Scholar 

  16. Kolb B, Cote S, Ribeiro-da-Silva A, Cuello AC (1997) Nerve growth factor treatment prevents dendritic atrophy and promotes recovery of function after cortical injury. Neuroscience 76:1139–1151

    Article  CAS  PubMed  Google Scholar 

  17. Whishaw IQ, Metz GA (2002) Absence of impairments or recovery mediated by the uncrossed pyramidal tract in the rat versus enduring deficits produced by the crossed pyramidal tract. Behav Brain Res 134:323–336

    Article  PubMed  Google Scholar 

  18. Kirkland SW, Smith LK, Metz GA (2012) Task-specific compensation and recovery following focal motor cortex lesion in stressed rats. J Integr Neurosci 11:33–59

    Article  PubMed  Google Scholar 

  19. Whishaw IQ, O’Connor WT, Dunnett SB (1986) The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 109(Pt 5):805–843

    Article  PubMed  Google Scholar 

  20. Whishaw IQ, Miklyaeva EI (1996) A rat’s reach should exceed its grasp: analysis of independent limb and digit use in the laboratory rat. In: Ossenkopp KP, Kavaliers M (eds) Measuring movement and locomotion: from invertebrates to humans. RG Landes, Austin, pp 135–169

    Google Scholar 

  21. Farr TD, Whishaw IQ (2002) Quantitative and qualitative impairments in skilled reaching in the mouse (Mus musculus) after a focal motor cortex stroke. Stroke 33:1869–1875

    Article  PubMed  Google Scholar 

  22. Metz GA, Whishaw IQ (2000) Skilled reaching an action pattern: stability in rat (Rattus norvegicus) grasping movements as a function of changing food pellet size. Behav Brain Res 116:111–122

    Article  CAS  PubMed  Google Scholar 

  23. Merrett DL, Kirkland SW, Metz GA (2010) Synergistic effects of age and stress in a rodent model of stroke. Behav Brain Res 214:55–59

    Article  PubMed  Google Scholar 

  24. Metz GA, Antonow-Schlorke I, Witte OW (2005) Motor improvements after focal cortical ischemia in adult rats are mediated by compensatory mechanisms. Behav Brain Res 162:71–82

    Article  PubMed  Google Scholar 

  25. Eskhol N, Wachmann A (1958) Movement notation. Weidenfeld and Nicolson, London

    Google Scholar 

  26. Whishaw IQ, Pellis SM, Gorny BP, Pellis VC (1991) The impairments in reaching and the movements of compensation in rats with motor cortex lesions: an endpoint, videorecording, and movement notation analysis. Behav Brain Res 42:77–91

    Article  CAS  PubMed  Google Scholar 

  27. Whishaw IQ, Pellis SM, Gorny BP (1992) Skilled reaching in rats and humans: evidence for parallel development or homology. Behav Brain Res 47:59–70

    Article  CAS  PubMed  Google Scholar 

  28. Metz GA, Whishaw IQ (2002) Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 115:169–179

    Article  PubMed  Google Scholar 

  29. Wallace DG, Winter SS, Metz GA (2012) Serial pattern learning during skilled walking. J Integr Neurosci 11:17–32

    Article  PubMed  Google Scholar 

  30. Antonow-Schlorke I, Ehrhardt J, Knieling M (2013) Modification of the ladder rung walking task-new options for analysis of skilled movements. Stroke Res Treat 2013:418627

    PubMed  PubMed Central  Google Scholar 

  31. Lopatin D, Caputo N, Damphousse C, Pandey S, Cohen J (2015) Rats anticipate damaged rungs on the elevated ladder: applications for rodent models of Parkinson’s disease. J Integr Neurosci 14:97–120

    Article  PubMed  Google Scholar 

  32. Metz GA, Schwab ME, Welzl H (2001) The effects of acute and chronic stress on motor and sensory performance in male Lewis rats. Physiol Behav 72:29–35

    Article  CAS  PubMed  Google Scholar 

  33. Farr TD, Liu L, Colwell KL, Whishaw IQ, Metz GA (2006) Bilateral alteration in stepping pattern after unilateral motor cortex injury: a new test strategy for analysis of skilled limb movements in neurological mouse models. J Neurosci Methods 153:104–113

    Article  PubMed  Google Scholar 

  34. Hunsaker MR, von Leden RE, Ta BT, Goodrich-Hunsaker NJ, Arque G, Kim K, Willemsen R, Berman RF (2011) Motor deficits on a ladder rung task in male and female adolescent and adult CGG knock-in mice. Behav Brain Res 222:117–121

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hamilton DA, Driscoll I, Sutherland RJ (2002) Human place learning in a virtual Morris water task: some important constraints on the flexibility of place navigation. Behav Brain Res 129:159–170

    Article  PubMed  Google Scholar 

  36. Morris R (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Article  Google Scholar 

  37. Whishaw IQ (1995) A comparison of rats and mice in a swimming pool place task and matching to place task: some surprising differences. Physiol Behav 58:687–693

    Article  CAS  PubMed  Google Scholar 

  38. Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  CAS  PubMed  Google Scholar 

  39. Sutherland RJ, Whishaw IQ, Regehr JC (1982) Cholinergic receptor blockade impairs spatial localization by use of distal cues in the rat. J Comp Physiol Psychol 96:563–573

    Article  CAS  PubMed  Google Scholar 

  40. Whishaw IQ, Cassel JC, Jarrad LE (1995) Rats with fimbria-fornix lesions display a place response in a swimming pool: a dissociation between getting there and knowing where. J Neurosci 15:5779–5788

    CAS  PubMed  Google Scholar 

  41. McNamara RK, Skelton RW (1993) The neuropharmacological and neurochemical basis of place learning in the Morris water maze. Brain Res Brain Res Rev 18:33–49

    Article  CAS  PubMed  Google Scholar 

  42. Cain DP, Saucier D (1996) The neuroscience of spatial navigation: focus on behavior yields advances. Rev Neurosci 7:215–231

    Article  CAS  PubMed  Google Scholar 

  43. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1. Behavioral data. Behav Brain Res 31:47–59

    Article  CAS  PubMed  Google Scholar 

  44. Mumby DG, Piterkin P, Lecluse V, Lehmann H (2007) Perirhinal cortex damage and anterograde object-recognition in rats after long retention intervals. Behav Brain Res 185:82–87

    Article  PubMed  Google Scholar 

  45. Taglialatela G, Hogan D, Zhang WR, Dineley KT (2009) Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 200:95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author acknowledges support by grants from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, and the Alberta Heritage Foundation for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerlinde A. S. Metz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Metz, G.A.S. (2016). Behavioral Testing in Rodent Models of Stroke, Part II. In: Dirnagl, U. (eds) Rodent Models of Stroke. Neuromethods, vol 120. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5620-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-5620-3_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-5618-0

  • Online ISBN: 978-1-4939-5620-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics