Skip to main content

Introduction to Functional MRI Hardware

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 119))

Abstract

The chapter gives an overview of peripheral devices commonly used in fMRI experiments, and it addresses the principles, performance aspects, and specifications of fMRI hardware. The general guidelines for MR-compatible hardware are also discussed. The target audience is quite broad and mathematical descriptions are kept to a minimum and qualitative descriptions are favored whenever possible.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    These numbers are based on the specification of a 3 T scanner by General Electric (MR750).

  2. 2.

    For more information on superconductivity, see [5]

References

  1. Shellock FG (2002) Reference manual for magnetic resonance safety, implants, and devices. Saunders, Oxford, UK

    Google Scholar 

  2. Shellock FG, Crues JV 3rd (2002) MR safety and the American College of Radiology white paper. AJR Am J Roentgenol 178:1349–1352

    Article  PubMed  Google Scholar 

  3. Train JJ (2003) Magnetic resonance compatible equipment. Anaesthesia 58:387, Author reply 387

    Article  CAS  PubMed  Google Scholar 

  4. Durand E, van de Moortele PF, Pachot-Clouard M, Le Bihan D (2001) Artifact due to B0 fluctuations in fMRI: correction using the k-space central line. Magn Reson Med 46:198–201

    Article  CAS  PubMed  Google Scholar 

  5. Tinkham M (2004) Introduction to superconductivity, 2nd edn, Dover Books on Physics. Dover Publications, Mineola, NY

    Google Scholar 

  6. Radebaugh R (2009) Cryocoolers: the state of the art and recent developments. J Phys Condens Matter 21:164219

    Article  PubMed  Google Scholar 

  7. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang QX, Wang J, Zhang X et al (2002) Analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 47:982–989

    Article  PubMed  Google Scholar 

  9. Collins CM, Liu W, Schreiber W, Yang QX, Smith MB (2005) Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 21:192–196

    Article  PubMed  Google Scholar 

  10. Tropp J (2004) Image brightening in samples of high dielectric constant. J Magn Reson 167:12–24

    Article  CAS  PubMed  Google Scholar 

  11. Schneider E, Glover G (1991) Rapid in vivo proton shimming. Magn Reson Med 18:335–347

    Article  CAS  PubMed  Google Scholar 

  12. Dylan Tisdall M, Witzel T, Tountcheva V, McNab JA, Adad JC, Kimmlingen R, Hoecht P, Eberlein E, Heberlein K, Schmitt F, Thein H, Wedeen Van J, Rosen BR, Wald LL (2012) Improving SNR in high b-value diffusion imaging using Gmax = 300 mT/m human gradients, Proc ISMRM 2012

    Google Scholar 

  13. Gach HM, Lowe IJ, Madio DP et al (1998) A programmable pre-emphasis system. Magn Reson Med 40:427–431

    Article  CAS  PubMed  Google Scholar 

  14. Wysong RE, Madio DP, Lowe IJ (1994) A novel eddy current compensation scheme for pulsed gradient systems. Magn Reson Med 31:572–575

    Article  CAS  PubMed  Google Scholar 

  15. Mansfield P, Chapman B (1986) Active magnetic screening of coils for static and time-dependent magnetic field generation in NMR imaging. J Phys E Sci Instrum 19:540–545

    Article  Google Scholar 

  16. Edelstein WA, Kidane TK, Taracila V et al (2005) Active-passive gradient shielding for MRI acoustic noise reduction. Magn Reson Med 53:1013–1017

    Article  PubMed  Google Scholar 

  17. Pruessmann KP et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  CAS  PubMed  Google Scholar 

  18. Blaimer M, Breuer F, Mueller M et al (2004) SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 15:223–236

    Article  PubMed  Google Scholar 

  19. Hoult DI, Chen CN, Sank VJ (1984) Quadrature detection in the laboratory frame. Magn Reson Med 1:339–353

    Article  CAS  PubMed  Google Scholar 

  20. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225

    Article  CAS  PubMed  Google Scholar 

  21. Griswold MA et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  22. Larkman D, Hajnal J, Herlihy A, Coutts G, Young I, Ehnholm G (2001) Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 13(2):313–317

    Article  CAS  PubMed  Google Scholar 

  23. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67:1210–1224

    Article  PubMed  Google Scholar 

  24. Feinberg D, Moeller S, Smith S, Auerbach E, Ramanna S, Glasser M, Miller K, Ugurbil K, Yacoub E (2010) Multiplexed echo planar imaging for sub-second whole brain fmri and fast diffusion imaging. PLoS One 5(12), e15710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Z, Yip CY, Grissom W, Noll DC, Boada FE, Stenger VA (2007) Reduction of transmitter B1 inhomogeneity with transmit SENSE slice-select pulses. Magn Reson Med 57(5):842–847

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stenger VA, Boada FE, Noll DC (2000) Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in T2*-weighted functional MRI. Magn Reson Med 44(4):525–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yip CY, Fessler JA, Noll DC (2006) Advanced three-dimensional tailored RF pulse for signal recovery in T2*-weighted functional magnetic resonance imaging. Magn Reson Med 56(5):1050–1059

    Article  PubMed  Google Scholar 

  28. Jakob PM et al (1998) Functional burst imaging. Magn Reson Med 40:614–621

    Article  CAS  PubMed  Google Scholar 

  29. Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM (1999) Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp 7:89–97

    Article  CAS  PubMed  Google Scholar 

  30. Noll DC, Schneider W (1994) Theory, simulation, and compensation of physiological motion artifacts in functional MRI. Image processing, 1994. Proceedings ICIP-94. IEEE Int Conf 3:40–44

    Google Scholar 

  31. Hu X, Le TH, Parrish T, Erhard P (1995) Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 34:201–212

    Article  CAS  PubMed  Google Scholar 

  32. Pfeuffer J, Van de Moortele PF, Ugurbil K, Hu X, Glover GH (2002) Correction of physiologically induced global off-resonance effects in dynamic echo-planar and spiral functional imaging. Magn Reson Med 47:344–353

    Article  PubMed  Google Scholar 

  33. Tremblay M, Tam F, Graham SJ (2005) Retrospective coregistration of functional magnetic resonance imaging data using external monitoring. Magn Reson Med 53:141–149

    Article  PubMed  Google Scholar 

  34. Zaitsev M, Dold C, Sakas G, Hennig J, Speck O (2006) Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 31:1038–1050

    Article  CAS  PubMed  Google Scholar 

  35. Thesen S, Heid O, Mueller E, Schad LR (2000) Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 44:457–465

    Article  CAS  PubMed  Google Scholar 

  36. Chen W, Zhu XH (1997) Suppression of physiological eye movement artifacts in functional MRI using slab presaturation. Magn Reson Med 38:546–550

    Article  CAS  PubMed  Google Scholar 

  37. Harrivel AR et al (2009) Toward improved headgear for monitoring with functional near infrared spectroscopy. NeuroImage 47:S141

    Article  Google Scholar 

  38. Barker AT (1991) An introduction to the basic principles of magnetic nerve stimulation. J Clin Neurophysiol 8:26–37

    Article  CAS  PubMed  Google Scholar 

  39. Barker AT (1999) The history and basic principles of magnetic nerve stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:3–21

    CAS  PubMed  Google Scholar 

  40. Jalinous R (1991) Technical and practical aspects of magnetic nerve stimulation. J Clin Neurophysiol 8:10–25

    Article  CAS  PubMed  Google Scholar 

  41. Ruohonen J, Ravazzani P, Tognola G, Grandori F (1997) Modeling peripheral nerve stimulation using magnetic fields. J Peripher Nerv Syst 2:17–29

    CAS  PubMed  Google Scholar 

  42. Ilmoniemi RJ et al (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8:3537–3540

    Article  CAS  PubMed  Google Scholar 

  43. Berne RM, Levy MN (1993) Physiology, Mosby year book. Mosby, St. Louis

    Google Scholar 

  44. George MS et al (2003) Transcranial magnetic stimulation. Neurosurg Clin N Am 14:283–301

    Article  PubMed  Google Scholar 

  45. Paus T (2005) Inferring causality in brain images: a perturbation approach. Philos Trans R Soc Lond B Biol Sci 360:1109–1114

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237

    Article  CAS  PubMed  Google Scholar 

  47. Rothwell JC (1999) Paired-pulse investigations of short-latency intracortical facilitation using TMS in humans. Electroencephalogr Clin Neurophysiol Suppl 51:113–119

    CAS  PubMed  Google Scholar 

  48. Ilmoniemi RJ, Ruohonen J, Karhu J (1999) Transcranial magnetic stimulation–a new tool for functional imaging of the brain. Crit Rev Biomed Eng 27:241–284

    CAS  PubMed  Google Scholar 

  49. Bastings EP et al (1998) Co-registration of cortical magnetic stimulation and functional magnetic resonance imaging. Neuroreport 9:1941–1946

    Article  CAS  PubMed  Google Scholar 

  50. Bohning DE et al (1998) Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest Radiol 33:336–340

    Article  CAS  PubMed  Google Scholar 

  51. Bohning DE et al (1999) A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biol Psychiatry 45:385–394

    Article  CAS  PubMed  Google Scholar 

  52. Bohning DE et al (2000) BOLD-f MRI response to single-pulse transcranial magnetic stimulation (TMS). J Magn Reson Imaging 11:569–574

    Article  CAS  PubMed  Google Scholar 

  53. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166(1):23–30

    Article  PubMed  Google Scholar 

  55. Dieckhöfer A, Waberski TD, Nitsche M, Paulus W, Buchner H, Gobbelé R (2006) Transcranial direct current stimulation applied over the somatosensory cortex – differential effect on low and high frequency SEPs. Clin Neurophysiol 117(10):2221–2227

    Article  PubMed  Google Scholar 

  56. Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565

    Article  CAS  PubMed  Google Scholar 

  57. Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2:215–228

    Article  PubMed  PubMed Central  Google Scholar 

  58. Antal A et al (2011) Transcranial direct current stimulation over the primary motor cortex during fMRI. Neuroimage 55(2):590–596

    Article  PubMed  Google Scholar 

  59. Weber MJ et al (2014) Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: A tDCS‐fMRI study. Hum Brain Mapp 35(8):3673–3686

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Hernandez-Garcia Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hernandez-Garcia, L., Peltier, S., Grissom, W. (2016). Introduction to Functional MRI Hardware. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 119. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5611-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-5611-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-5609-8

  • Online ISBN: 978-1-4939-5611-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics