Skip to main content

A Novel Method to Quantify RNA–Protein Interactions In Situ Using FMTRIP and Proximity Ligation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1468))

Abstract

RNA binding proteins (RBP) and small RNAs regulate the editing, localization, stabilization, translation, and degradation of ribonucleic acids (RNAs) through their interactions with specific cis-acting elements within target RNAs. Here, we describe a novel method to detect protein–mRNA interactions, which combines FLAG-peptide modified, multiply-labeled tetravalent RNA imaging probes (FMTRIPs) with proximity ligation (PLA), and rolling circle amplification (RCA). This assay detects native RNA in a sequence specific and single RNA sensitive manner, and PLA allows for the quantification and localization of protein–mRNA interactions with single-interaction sensitivity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:533–543

    Article  CAS  PubMed  Google Scholar 

  2. Ho JJ, Marsden PA (2014) Competition and collaboration between RNA-binding proteins and microRNAs. Wiley Interdiscip Rev RNA 5:69–86

    Article  CAS  PubMed  Google Scholar 

  3. Keene JD, Tenenbaum SA (2002) Eukaryotic mRNPs may represent posttranscriptional operons. Mol Cell 9:1161–1167

    Article  CAS  PubMed  Google Scholar 

  4. Giorgi C, Moore MJ (2007) The nuclear nurture and cytoplasmic nature of localized mRNPs. Semin Cell Dev Biol 18:186–193

    Article  CAS  PubMed  Google Scholar 

  5. Gonsalvez GB, Long RM (2012) Spatial regulation of translation through RNA localization. F1000 Biol Rep 4:16

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gaspar I, Ephrussi A (2015) Strength in numbers: quantitative single-molecule RNA detection assays. Wiley Interdiscip Rev Dev Biol 4:135–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lorenz M (2009) Visualizing protein-RNA interactions inside cells by fluorescence resonance energy transfer. RNA 15:97–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pitchiaya S, Heinicke LA, Custer TC et al (2014) Single molecule fluorescence approaches shed light on intracellular RNAs. Chem Rev 114:3224–3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mchugh CA, Russell P, Guttman M (2014) Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol 15:203

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cook KB, Hughes TR, Morris QD (2015) High-throughput characterization of protein-RNA interactions. Brief Funct Genomics 14:74–89

    Article  PubMed  Google Scholar 

  11. Halbeisen RE, Galgano A, Scherrer T et al (2008) Post-transcriptional gene regulation: from genome-wide studies to principles. Cell Mol Life Sci 65:798–813

    Article  CAS  PubMed  Google Scholar 

  12. Santangelo PJ, Lifland AW, Curt P et al (2009) Single molecule-sensitive probes for imaging RNA in live cells. Nat Methods 6:347–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Santangelo PJ, Alonas E, Jung J et al (2012) Probes for intracellular RNA imaging in live cells. Methods Enzymol 505:383–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zurla C, Lifland AW, Santangelo PJ (2011) Characterizing mRNA interactions with RNA granules during translation initiation inhibition. PLoS One 6:e19727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lifland AW, Zurla C, Yu J et al (2011) Dynamics of native beta-actin mRNA transport in the cytoplasm. Traffic 12:1000–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lifland AW, Zurla C, Santangelo PJ (2010) Single molecule sensitive multivalent polyethylene glycol probes for RNA imaging. Bioconjug Chem 21:483–488

    Article  CAS  PubMed  Google Scholar 

  17. Lifland AW, Jung J, Alonas E et al (2012) Human respiratory syncytial virus nucleoprotein and inclusion bodies antagonize the innate immune response mediated by MDA5 and MAVS. J Virol 86:8245–8258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alonas E, Lifland AW, Gudheti M et al (2014) Combining single RNA sensitive probes with subdiffraction-limited and live-cell imaging enables the characterization of virus dynamics in cells. ACS Nano 8:302–315

    Article  CAS  PubMed  Google Scholar 

  19. Soderberg O, Gullberg M, Jarvius M et al (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000

    Article  PubMed  Google Scholar 

  20. Clausson CM, Allalou A, Weibrecht I et al (2011) Increasing the dynamic range of in situ PLA. Nat Methods 8:892–893

    Article  CAS  PubMed  Google Scholar 

  21. Soderberg O, Leuchowius KJ, Gullberg M et al (2008) Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45:227–232

    Article  PubMed  Google Scholar 

  22. Leuchowius KJ, Weibrecht I, Soderberg O (2011) In situ proximity ligation assay for microscopy and flow cytometry. Curr Protoc Cytom. J. Paul Robinson, managing editor … [et al.] Chapter 9:Unit 9 36

    Google Scholar 

  23. Jung J, Lifland AW, Zurla C et al (2013) Quantifying RNA-protein interactions in situ using modified-MTRIPs and proximity ligation. Nucleic Acids Res 41:e12

    Article  CAS  PubMed  Google Scholar 

  24. Wigington CP, Jung J, Rye EA et al (2015) Post-transcriptional regulation of programmed cell death 4 (PDCD4) mRNA by the RNA-binding proteins human antigen R (HuR) and T-cell intracellular antigen 1 (TIA1). J Biol Chem 290:3468–3487

    Article  CAS  PubMed  Google Scholar 

  25. Jung J, Lifland AW, Alonas EJ et al (2013) Characterization of mRNA-cytoskeleton interactions in situ using FMTRIP and proximity ligation. PLoS One 8:e74598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Condeelis J, Singer RH (2005) How and why does beta-actin mRNA target? Biol Cell 97:97–110

    Article  CAS  PubMed  Google Scholar 

  27. Sundell CL, Singer RH (1991) Requirement of microfilaments in sorting of actin messenger RNA. Science 253:1275–1277

    Article  CAS  PubMed  Google Scholar 

  28. Bassell GJ, Powers CM, Taneja KL et al (1994) Single mRNAs visualized by ultrastructural in situ hybridization are principally localized at actin filament intersections in fibroblasts. J Cell Biol 126:863–876

    Article  CAS  PubMed  Google Scholar 

  29. Koos B, Cane G, Grannas K et al (2015) Proximity-dependent initiation of hybridization chain reaction. Nat Commun 6:7294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Santangelo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zurla, C., Jung, J., Blanchard, E.L., Santangelo, P.J. (2017). A Novel Method to Quantify RNA–Protein Interactions In Situ Using FMTRIP and Proximity Ligation. In: Ørom, U. (eds) Enhancer RNAs. Methods in Molecular Biology, vol 1468. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4035-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4035-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4033-2

  • Online ISBN: 978-1-4939-4035-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics