Skip to main content

Identifying Direct Downstream Targets: WT1 ChIP-Seq Analysis

  • Protocol
  • First Online:
The Wilms' Tumor (WT1) Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1467))

Abstract

Identifying targets of transcriptional regulators such as the Wilms’ tumor-suppressor protein (WT1) is an integral part of understanding the mechanisms governing the spatial and temporal activation of different genes. A commonly used strategy for studying transcription factors involves performing chromatin immunoprecipitation (ChIP) for the protein of interest with an appropriate antibody in crosslinked cells. Following ChIP, the enriched DNA is sequenced using next-generation sequencing (NGS) technologies and the transcription factor target sites are identified via bioinformatics analysis. Here we provide a detailed protocol for performing a successful ChIP-Seq experiment for WT1. We have optimized and simplified the several steps necessary for the immunoprecipitation of WT1’s target-binding sites. We also suggest several strategies for validating the experiment and provide brief guidelines on how to analyze the large amounts of data generated from high-throughout sequencing. This method can be adapted for a variety of different tissues and/or cell types to help understand the role of WT1 in regulating gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartwig S, Ho J, Pandey P et al (2010) Genomic characterization of Wilms’ tumor suppressor 1 targets in nephron progenitor cells during kidney development. Development 137:1189–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Motamedi FJ, Badro DA, Clarkson M et al (2014) WT1 controls antagonistic FGF and BMP-pSMAD pathways in early renal progenitors. Nat Commun 5:4444

    Article  CAS  PubMed  Google Scholar 

  3. Lefebvre J, Clarkson M, Massa F et al (2015) Alternatively spliced isoforms of WT1 control podocyte-specific gene expression. Kidney Int 88(2):321–331

    Article  CAS  PubMed  Google Scholar 

  4. Kann M, Ettou S, Jung YL et al (2015) Genome-wide analysis of Wilms’ tumor 1-controlled gene expression in podocytes reveals key regulatory mechanisms. J Am Soc Nephrol 26(9):2097–2104

    Article  CAS  PubMed  Google Scholar 

  5. Dong L, Pietsch S, Tan Z et al (2015) Integration of cistromic and transcriptomic analyses identifies Nphs2, Mafb, and Magi2 as Wilms’ tumor 1 target genes in podocyte differentiation and maintenance. J Am Soc Nephrol 26(9):2118–2128

    Article  CAS  PubMed  Google Scholar 

  6. Landt SG, Marinov GK, Kundaje A et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22:1813–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blankenberg D, Gordon A, Von Kuster G et al (2010) Manipulation of FASTQ data with Galaxy. Bioinformatics 26:1783–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Liu T, Meyer CA et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  PubMed  PubMed Central  Google Scholar 

  11. Machanick P, Bailey TL (2011) MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27:1696–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McLeay RC, Bailey TL (2010) Motif enrichment analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics 11:165

    Article  PubMed  PubMed Central  Google Scholar 

  13. McLean CY, Bristor D, Hiller M et al (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28:495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eden E, Navon R, Steinfeld I et al (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schedl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

da Silva, F., Massa, F., Schedl, A. (2016). Identifying Direct Downstream Targets: WT1 ChIP-Seq Analysis. In: Hastie, N. (eds) The Wilms' Tumor (WT1) Gene. Methods in Molecular Biology, vol 1467. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4023-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4023-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4021-9

  • Online ISBN: 978-1-4939-4023-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics