Skip to main content

Poly(N,N-Dimethylacrylamide)-Based Coatings to Modulate Electroosmotic Flow and Capillary Surface Properties for Protein Analysis

  • Protocol
  • First Online:
  • 1347 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1466))

Abstract

Capillary electrophoresis (CE) is one of the most powerful techniques for the separation of biomolecules. However, the separation efficiency of proteins in CE is often compromised by their tendency to interact with the silanol groups on the surface of the inner capillary and by an uncontrolled electroosmotic flow. Herein, we report on the use of novel hydrophilic polymeric coatings that can modulate the properties of the capillary walls. The novelty of these poly(N,N-dimethylacrylamide)-based copolymers relies on the simultaneous presence of chemically reactive groups (N-acryloyloxysuccinimide and glycidyl methacrylate) and silane groups in the backbone, which results in highly stable films due to the covalent reaction between the polymer and the glass silanols. A careful optimization of monomer concentration confers anti-fouling properties to the polymer coatings, and thus allows for highly efficient acidic and alkaline protein separations. Furthermore, the presence of these monomers makes it possible to modulate the electroosmotic flow from negligible to reduced values, depending on the desired application.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lookhart GL, Bean SR. (2004) Capillary electrophoresis of cereal proteins: an overview. J Capill Electrophor Microchip Technol 9:23–30

    Google Scholar 

  2. Lucy CA, MacDonald AM, Gulcev MD (2008) Non-covalent capillary coatings for protein separations in capillary electrophoresis. J Chromatogr A 1184:81–105

    Article  CAS  PubMed  Google Scholar 

  3. Lauer HH, McManigill D (1986) Capillary zone electrophoresis of proteins in untreated fused silica tubing. Anal Chem 58:166–170

    Article  CAS  Google Scholar 

  4. McCormick RM (1988) Capillary zone electrophoretic separation of peptides and proteins using low pH buffers in modified silica capillaries. Anal Chem 60:2322–2328

    Article  CAS  PubMed  Google Scholar 

  5. Green JS, Jorgenson JW (1989) Minimizing adsorption of proteins on fused silica in capillary zone electrophoresis by the addition of alkali metal salts to the buffers. J Chromatogr A 478:63–70

    CAS  Google Scholar 

  6. Bachmann S, Vallant R, Bakry R et al (2010) CE coupled to MALDI with novel covalently coated capillaries. Electrophoresis 31:618–629

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Z, Yan B, Liu K et al (2009) CE-MS analysis of heroin and its basic impurities using a charged polymer-protected gold nanoparticle-coated capillary. Electrophoresis 30:379–387

    Article  CAS  PubMed  Google Scholar 

  8. Ullsten S, Zuberovic A, Wetterhall M et al (2004) A polyamine coating for enhanced capillary electrophoresis-electrospray ionization-mass spectrometry of proteins and peptides. Electrophoresis 25:2090–2099

    Article  CAS  PubMed  Google Scholar 

  9. Kašička V (2010) Recent advances in CE and CEC of peptides (2007-2009). Electrophoresis 31:122–146

    Article  PubMed  Google Scholar 

  10. Liu CY (2001) Stationary phases for capillary electrophoresis and capillary electrochromatography. Electrophoresis 22:612–628

    Article  CAS  PubMed  Google Scholar 

  11. Chiari M, Cretich M, Damin F et al (2000) New adsorbed coatings for capillary electrophoresis. Electrophoresis 21:909–916

    Article  CAS  PubMed  Google Scholar 

  12. Cretich M, Chiari M, Pirri G et al (2005) Electroosmotic flow suppression in capillary electrophoresis: chemisorption of trimethoxy silane-modified polydimethylacrylamide. Electrophoresis 26:1913–1919

    Article  CAS  PubMed  Google Scholar 

  13. Pirri G, Damin F, Chiari M et al (2004) Characterization of a polymeric adsorbed coating for DNA microarray glass slides. Anal Chem 76:1352–1358

    Article  CAS  PubMed  Google Scholar 

  14. Yalçin A, Damin F, Ozkumur E et al (2009) Direct observation of conformation of a polymeric coating with implications in microarray applications. Anal Chem 81:625–630

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cretich M, Reddington A, Monroe M et al (2011) Silicon biochips for dual label-free and fluorescence detection: application to protein microarray development. Biosens Bioelectron 26:3938–3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cretich M, Sedini V, Damin F et al (2008) Functionalization of poly(dimethylsiloxane) by chemisorption of copolymers: DNA microarrays for pathogen detection. Sens Actuators B 132:258–264

    Article  CAS  Google Scholar 

  17. Cretich M, Sedini V, Damin F et al (2010) Coating of nitrocellulose for colorimetric DNA microarrays. Anal Biochem 397:84–88

    Article  CAS  PubMed  Google Scholar 

  18. Chiari M (2011) Patent application WO 2011124715 A1, silane copolymers and uses thereof, WO 2011124715 A1, 2011.

    Google Scholar 

  19. Sola L, Chiari M (2012) Modulation of electroosmotic flow in capillary electrophoresis using functional polymer coatings. J Chromatogr A 1270:324–329

    Article  CAS  PubMed  Google Scholar 

  20. Marangoni S, Rech I, Ghioni M et al (2010) A 6×8 photon-counting array detector system for fast and sensitive analysis of protein microarrays. Sens Actuators B 149:420–426

    Article  CAS  Google Scholar 

  21. Luzinov I, Julthongpiput D, Malz H et al (2000) Polystyrene layers grafted to epoxy-modified silicon surfaces. Macromolecules 33:1043–1048

    Article  CAS  Google Scholar 

  22. Williams BA, Vigh G (1996) Fast, accurate mobility determination method for capillary electrophoresis. Anal Chem 68:1174–1180

    Article  CAS  PubMed  Google Scholar 

  23. Mammen M, Dahmann G, Whitesides GM (1995) Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition. J Med Chem 38:4179–4190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was financially supported by FP7 EU NADINE Project (contract number 246513) and by Italian Ministry for Research and Education FIRB NEMATIC Project (contract number RBFR 12OOG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Sola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sola, L., Cretich, M., Chiari, M. (2016). Poly(N,N-Dimethylacrylamide)-Based Coatings to Modulate Electroosmotic Flow and Capillary Surface Properties for Protein Analysis. In: Tran, N., Taverna, M. (eds) Capillary Electrophoresis of Proteins and Peptides. Methods in Molecular Biology, vol 1466. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4014-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4014-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4012-7

  • Online ISBN: 978-1-4939-4014-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics