Skip to main content

Immunological Analyses of Leukemia Stem Cells

  • Protocol
  • First Online:
Book cover Chronic Myeloid Leukemia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1465))

  • 1453 Accesses

Abstract

Traditionally, the intracellular localization and expression levels of specific proteins in CML Leukemia stem cells (LSCs) have been evaluated by fluorescence immunohistochemistry (FIHC). More recently, Duolink® in situ PLA technology has opened up a new and more quantitative way to evaluate signal transduction, posttranslational modification, and protein-protein interaction at the single-stem-cell level. This novel methodology, which employs two antibody-based probes, has already increased our understanding of the biology of the rare CML LSC population. In the future, the use of this approach may contribute to the development of novel therapeutics aimed at eradicating CML LSCs in CML patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ren R (2005) Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5:172–183

    Article  CAS  PubMed  Google Scholar 

  2. Krause DS, Van Etten RA (2007) Right on target: eradicating leukemic stem cells. Trends Mol Med 13:470–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Savona M, Talpaz M (2008) Getting to the stem of chronic myeloid leukaemia. Nat Rev Cancer 8:341–350

    Article  CAS  PubMed  Google Scholar 

  4. O’Hare T, Zabriskie MS, Eiring AM, Deininger MW (2012) Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nat Rev Cancer 12:513–526

    Article  PubMed  Google Scholar 

  5. Ahmed W, Van Etten RA (2013) Alternative approaches to eradicating the malignant clone in chronic myeloid leukemia: tyrosine-kinase inhibitor combinations and beyond. Hematology Am Soc Hematol Educ Program 2013:189–200

    PubMed  PubMed Central  Google Scholar 

  6. Bhatia R et al (2013) Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101:4701–4707

    Article  Google Scholar 

  7. Druker BJ et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417

    Article  CAS  PubMed  Google Scholar 

  8. Hochhaus A et al (2009) Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 23:1054–1061

    Article  CAS  PubMed  Google Scholar 

  9. Giles FJ et al (2010) Nilotinib is superior to imatinib as first-line therapy of chronic myeloid leukemia: the ENESTnd study. Expert Rev Hematol 3:665–673

    Article  CAS  PubMed  Google Scholar 

  10. Kantarjian H et al (2010) Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 362:2260–2270

    Article  CAS  PubMed  Google Scholar 

  11. Ross DM et al (2010) Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia 24:1719–1724

    Article  CAS  PubMed  Google Scholar 

  12. Ibrahim AR et al (2011) Poor adherence is the main reason for loss of CCyR and imatinib failure for chronic myeloid leukemia patients on long-term therapy. Blood 117:3733–3736

    Article  CAS  PubMed  Google Scholar 

  13. Sinclair A, Latif AL, Holyoake TL (2013) Targeting survival pathways in chronic myeloid leukaemia stem cells. Br J Pharmacol 169:1693–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang H, Li S (2013) Molecular mechanisms for survival regulation of chronic myeloid leukemia stem cells. Protein Cell 4:186–196

    Article  PubMed  PubMed Central  Google Scholar 

  15. Naka K et al (2010) TGF-β-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463:676–680

    Article  CAS  PubMed  Google Scholar 

  16. Huettner CS, Zhang P, Van Etten RA, Tenen DG (2000) Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet 24:57–60

    Article  CAS  PubMed  Google Scholar 

  17. Koschmieder S et al (2005) Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 105:324–334

    Article  CAS  PubMed  Google Scholar 

  18. Reynaud D et al (2011) IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 20:661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li L et al (2012) Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 21:266–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang B et al (2012) Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell 21:577–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mantel CR et al (2015) Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161:1553–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gwinn DM et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  CAS  PubMed  Google Scholar 

  24. Jewell JL, Russell RC, Guan KL (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Naka K et al (2015) Dipeptide species regulate p38MAPK-Smad3 signalling to maintain chronic myelogenous leukaemia stem cells. Nat Commun 6:8039. doi:10.1038/ncomms9039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Takeda Science Foundation (K.N.) and by a Grant-in-Aid for Scientific Research (B) from MEXT (K.N.) from the Government of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhito Naka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Naka, K., Takihara, Y. (2016). Immunological Analyses of Leukemia Stem Cells. In: Li, S., Zhang, H. (eds) Chronic Myeloid Leukemia. Methods in Molecular Biology, vol 1465. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4011-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4011-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4009-7

  • Online ISBN: 978-1-4939-4011-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics