Advertisement

Japanese Kampo Medicine: Perspectives

  • Hajime Suzuki
  • Akio InuiEmail author
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Japanese Kampo medicine is based on traditional Chinese medicine but is adapted to the Japanese culture and bloomed in the eighteenth century when Japan closed itself off from contact with most foreign countries. Modern translational research on Kampo extending to basic science and clinical studies should be conducted for further development of complementary and alternative medicine and drug discovery for patients with many intractable diseases. Further studies, particularly double-blind studies, are needed to confirm the efficacy of Kampo and to obtain the evidence to support the use of Kampo.

Key words

Kampo Complementary and alternative medicine Cancer anorexia–cachexia Herbal medicine Translational research 

References

  1. 1.
    Yu F, Takahashi T, Moriya J et al (2006) Traditional Chinese medicine and Kampo: a review from the distant past for the future. J Int Med Res 34:231–239PubMedCrossRefGoogle Scholar
  2. 2.
    Cheung F (2011) TCM: Made in China. Nature 480:S82–S83. doi: 10.1038/480S82a PubMedCrossRefGoogle Scholar
  3. 3.
    Fuyuno I (2011) Japan: will the sun set on Kampo? Nature 480:S96. doi: 10.1038/480S96a PubMedCrossRefGoogle Scholar
  4. 4.
    Izuo M (2004) Medical history: Seishu hanaoka and his success in breast cancer surgery under general anesthesia two hundred years ago. Breast Cancer 11:319–324. doi: 10.1007/BF02968037 PubMedCrossRefGoogle Scholar
  5. 5.
    Ohtake N, Nakai Y, Yamamoto M et al (2004) Separation and isolation methods for analysis of the active principles of Sho-saiko-to (SST) oriental medicine. J Chromatogr B Analyt Technol Biomed Life Sci 812:135–148. doi: 10.1016/j.jchromb.2004.06.051 PubMedCrossRefGoogle Scholar
  6. 6.
    Temel JS, Greer JA, Muzikansky A et al (2010) Early palliative care for patients with metastatic non-small-cell lung cancer. N Engl J Med 363:733–742PubMedCrossRefGoogle Scholar
  7. 7.
    Qi F, Li A, Inagaki Y et al (2010) Chinese herbal medicines as adjuvant treatment during chemo- or radio-therapy for cancer. Biosci Trends 4:297–307PubMedGoogle Scholar
  8. 8.
    Liu L, Leung EL-H, Tian X (2011) Perspective: the clinical trial barriers. Nature 480:S100. doi: 10.1038/480S100a PubMedCrossRefGoogle Scholar
  9. 9.
    Lam W, Bussom S, Guan F et al (2010) The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med 2:45ra59. doi: 10.1126/scitranslmed.3001270 PubMedCrossRefGoogle Scholar
  10. 10.
    Fujitsuka N, Asakawa A, Uezono Y et al (2011) Potentiation of ghrelin signaling attenuates cancer anorexia-cachexia and prolongs survival. Transl Psychiatry 1:e23. doi: 10.1038/tp.2011.25 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Inui A (2001) Ghrelin: an orexigenic and somatotrophic signal from the stomach. Nat Rev Neurosci 2:551–560. doi: 10.1038/35086018 PubMedCrossRefGoogle Scholar
  12. 12.
    Inui A (2003) Neuropeptide gene polymorphisms and human behavioural disorders. Nat Rev Drug Discov 2:986–998. doi: 10.1038/nrd1252 PubMedCrossRefGoogle Scholar
  13. 13.
    Olaku O, White JD (2011) Herbal therapy use by cancer patients: a literature review on case reports. Eur J Cancer 47:508–514. doi: 10.1016/j.ejca.2010.11.018 PubMedCrossRefGoogle Scholar
  14. 14.
    Mukaida K, Hattori N, Kondo K et al (2011) A pilot study of the multiherb Kampo medicine bakumondoto for cough in patients with chronic obstructive pulmonary disease. Phytomedicine 18:625–629. doi: 10.1016/j.phymed.2010.11.006 PubMedCrossRefGoogle Scholar
  15. 15.
    Smith J, Woodcock A (2006) Cough and its importance in COPD. Int J Chron Obstruct Pulmon Dis 1:305–314PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kamei J, Yoshikawa Y, Saitoh A (2005) Antitussive effect of Bakumondoto (Mai-men-dong-tang) in guinea-pigs exposed to cigarette smoke. J Tradit Med 22:44–48Google Scholar
  17. 17.
    Aizawa H, Shigyo M, Nakano H et al (1999) Effect of the Chinese herbal medicine, Bakumondo-to, on airway hyperresponsiveness induced by ozone exposure in guinea-pigs. Respirology 4:349–354PubMedCrossRefGoogle Scholar
  18. 18.
    Aizawa H, Yoshida M, Inoue H, Hara N (2003) Traditional oriental herbal medicine, Bakumondo-to, suppresses vagal neuro-effector transmission in guinea pig trachea. J Asthma 40:497–503PubMedCrossRefGoogle Scholar
  19. 19.
    Miyata T (2004) Pharmacological characteristics of traditional medicine as curative ‘Polypharmacy’. Journal of Traditional Medicines 21:155–165. doi: 10.11339/jtm.21.155 Google Scholar
  20. 20.
    Miyata T (2007) Pharmacological basis of traditional medicines and health supplements as curatives. J Pharmacol Sci 103:127–131PubMedCrossRefGoogle Scholar
  21. 21.
    Tsunezuka Y (2010) The efficacy of bakumondoto on prolonged cough after lung cancer surgery. Kampo to Meneki Arerugi (Kampo and Immuno-Allergy) 22:43–55Google Scholar
  22. 22.
    Saiki I (2000) A Kampo medicine “Juzen-taiho-to-” prevention of malignant progression and metastasis of tumor cells and the mechanism of action. Biol Pharm Bull 23:677–688PubMedCrossRefGoogle Scholar
  23. 23.
    Tsuchiya M, Kono H, Matsuda M et al (2008) Protective effect of Juzen-taiho-to on hepatocarcinogenesis is mediated through the inhibition of Kupffer cell-induced oxidative stress. Int J Cancer 123:2503–2511. doi: 10.1002/ijc.23828 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Saiki I, Yamaura T, Ohnishi Y et al (1999) HPLC analysis of juzen-taiho-to and its variant formulations and their antimetastatic efficacies. Chem Pharm Bull 47:1170–1174PubMedCrossRefGoogle Scholar
  25. 25.
    Kamiyama H, Takano S, Ishikawa E et al (2005) Anti-angiogenic and immunomodulatory effect of the herbal medicine “Juzen-taiho-to” on malignant glioma. Biol Pharm Bull 28:2111–2116PubMedCrossRefGoogle Scholar
  26. 26.
    Tatsuta M, Iishi H, Baba M et al (1994) Inhibition by shi-quan-da-bu-tang (TJ-48) of experimental hepatocarcinogenesis induced by N-nitrosomorpholine in Sprague-Dawley rats. Eur J Cancer 30A:74–78PubMedCrossRefGoogle Scholar
  27. 27.
    Dhuley JN (1999) Anti-oxidant effects of cinnamon (Cinnamomum verum) bark and greater cardamom (Amomum subulatum) seeds in rats fed high fat diet. Indian J Exp Biol 37:238–242PubMedGoogle Scholar
  28. 28.
    Keum YS, Park KK, Lee JM et al (2000) Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett 150:41–48PubMedCrossRefGoogle Scholar
  29. 29.
    Chino A, Sakurai H, Choo M-K et al (2005) Juzentaihoto, a Kampo medicine, enhances IL-12 production by modulating Toll-like receptor 4 signaling pathways in murine peritoneal exudate macrophages. Int Immunopharmacol 5:871–882. doi: 10.1016/j.intimp.2005.01.004 PubMedCrossRefGoogle Scholar
  30. 30.
    Kawamata H, Ochiai H, Mantani N, Terasawa K (2000) Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW264.7 cells, a murine macrophage cell line. Am J Chin Med 28:217–226PubMedCrossRefGoogle Scholar
  31. 31.
    Inoue H, Seitz HK (2001) Viruses and alcohol in the pathogenesis of primary hepatic carcinoma. Eur J Cancer Prev 10:107–110PubMedCrossRefGoogle Scholar
  32. 32.
    Kountouras J, Lygidakis NJ (2000) New epidemiological data on liver oncogenesis. Hepatogastroenterology 47:855–861PubMedGoogle Scholar
  33. 33.
    Hussain S, Hofseth L, Harris C (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285PubMedCrossRefGoogle Scholar
  34. 34.
    Koike K (2006) Oxidative stress and hepatitis C viral infection. Hepatol Res 34:65–73PubMedCrossRefGoogle Scholar
  35. 35.
    Engstrom PF, Arnoletti JP, Benson AB et al (2009) NCCN Clinical Practice Guidelines in Oncology: colon cancer. J Natl Compr Canc Netw 7:778–831PubMedGoogle Scholar
  36. 36.
    Zuckerman DS, Clark JW (2008) Systemic therapy for metastatic colorectal cancer: current questions. Cancer 112:1879–1891. doi: 10.1002/cncr.23409 PubMedCrossRefGoogle Scholar
  37. 37.
    Cassidy J, Misset J-L (2002) Oxaliplatin-related side effects: characteristics and management. Semin Oncol 29:11–20. doi: 10.1053/sonc.2002.35524 PubMedCrossRefGoogle Scholar
  38. 38.
    Kono T, Mamiya N, Chisato N et al (2009) Efficacy of goshajinkigan for peripheral neurotoxicity of oxaliplatin in patients with advanced or recurrent colorectal cancer. Evid Based Complement Alternat Med. doi: 10.1093/ecam/nep200 Google Scholar
  39. 39.
    de Gramont A, Figer A, Seymour M (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18(16):2938–2947PubMedGoogle Scholar
  40. 40.
    Uno T, Ohsawa I, Tokudome M, Sato Y (2005) Effects of goshajinkigan on insulin resistance in patients with type 2 diabetes. Diabetes Res Clin Pract 69:129–135. doi: 10.1016/j.diabres.2004.11.017 PubMedCrossRefGoogle Scholar
  41. 41.
    Tawata M, Kurihara A, Nitta K, Iwase E (1994) The effects of goshajinkigan, a herbal medicine, on subjective symptoms and vibratory threshold in patients with diabetic neuropathy. Diabetes Res Clin Pract 26(2):121–128PubMedCrossRefGoogle Scholar
  42. 42.
    Usuki Y, Usuki S, Hommura S (1991) Successful treatment of a senile diabetic woman with cataract with goshajinkigan. Am J Chin Med 19:259–263PubMedCrossRefGoogle Scholar
  43. 43.
    Sato Y, Sakamoto N (1985) Treatment of diabetic neuropathy with Niu-Che-Sen-Qi-Wan. In: Recent Advances in Traditional Medicine in East Asia. Excerpta Medica, Amsterdam, pp 376–383Google Scholar
  44. 44.
    Mamiya N, Kono T, Mamiya K et al (2007) A case of neurotoxicity reduced with goshajinkigan in modified FOLFOX6 chemotherapy for advanced colon cancer. Gan To Kagaku Ryoho 34:1295–1297PubMedGoogle Scholar
  45. 45.
    Shindo Y, Tenma K, Imano H et al (2008) Reduction of oxaliplatin-related neurotoxicity by Gosha-jinki-gan. Gan To Kagaku Ryoho 35:863–865PubMedGoogle Scholar
  46. 46.
    Yamada K, Suzuki E, Nakaki T et al (2005) Aconiti tuber increases plasma nitrite and nitrate levels in humans. J Ethnopharmacol 96:165–169. doi: 10.1016/j.jep.2004.09.028 PubMedCrossRefGoogle Scholar
  47. 47.
    Gotoh A, Goto K, Sengoku A et al (2004) Inhibition mechanism of Gosha-jinki-gan on the micturition reflex in rats. J Pharmacol Sci 96:115–123PubMedCrossRefGoogle Scholar
  48. 48.
    Hu X, Sato J, Oshida Y et al (2003) Effect of Gosha-jinki-gan (Chinese herbal medicine: Niu-Che-Sen-Qi-Wan) on insulin resistance in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 59(2):103–111PubMedCrossRefGoogle Scholar
  49. 49.
    Imai A, Horibe S, Fuseya S et al (1995) Possible evidence that the herbal medicine shakuyaku-kanzo-to decreases prostaglandin levels through suppressing arachidonate turnover in endometrium. J Med 26:163–174PubMedGoogle Scholar
  50. 50.
    Yamamoto K, Hoshiai H, Noda K (2001) Effects of shakuyaku-kanzo-to on muscle pain from combination chemotherapy with paclitaxel and carboplatin. Gynecol Oncol 81:333–334. doi: 10.1006/gyno.2001.6168 PubMedCrossRefGoogle Scholar
  51. 51.
    Hyodo T, Taira T, Kumakura M et al (2002) The immediate effect of Shakuyaku-kanzo-to, traditional Japanese herbal medicine, for muscular cramps during maintenance hemodialysis. Nephron 90:240PubMedCrossRefGoogle Scholar
  52. 52.
    Hinoshita F (2003) Effect of orally administered shao-yao-gan-cao-tang (Shakuyaku-kanzo-to) on muscle cramps in maintenance hemodialysis patients: a preliminary study. Am J Chin Med 31:445–453. doi: 10.1142/S0192415X03001144 PubMedCrossRefGoogle Scholar
  53. 53.
    Hidaka T, Shima T, Nagira K et al (2009) Herbal medicine Shakuyaku-kanzo-to reduces paclitaxel-induced painful peripheral neuropathy in mice. Eur J Pain 13:22–27. doi: 10.1016/j.ejpain.2008.03.003 PubMedCrossRefGoogle Scholar
  54. 54.
    Maeda T, Shinozuka K, Baba K (1983) Effect of shakuyaku-kanzoh-toh, a prescription composed of shakuyaku (Paeoniae Radix) and kanzoh (Glycyrrhizae Radix) on guinea pig ileum. J Pharmacobiodyn 6:153–160PubMedCrossRefGoogle Scholar
  55. 55.
    Kimura M, Kimura I, Takahashi K et al (1984) Blocking effects of blended paeoniflorin or its related compounds with glycyrrhizin on neuromuscular junctions in frog and mouse. Jpn J Pharmacol 36:275–282PubMedCrossRefGoogle Scholar
  56. 56.
    Fukuda H, Chen C, Mantyh C et al (2006) The herbal medicine, Dai-Kenchu-to, accelerates delayed gastrointestinal transit after the operation in rats. J Surg Res 131:290–295. doi: 10.1016/j.jss.2005.09.018 PubMedCrossRefGoogle Scholar
  57. 57.
    Kehlet H (2001) Review of postoperative ileus. Am J Surg 182:3SPubMedCrossRefGoogle Scholar
  58. 58.
    Livingston E (1990) Postoperative ileus. Dig Dis Sci 35(121):1990Google Scholar
  59. 59.
    Miedema BW, Johnson JO (2003) Methods for decreasing postoperative gut dysmotility. Lancet Oncol 4:365–372PubMedCrossRefGoogle Scholar
  60. 60.
    Moriwaki Y, Yamamoto T, Katamura H (1992) Clinical research to the effect of dai-kenchuto for simple intestinal obstruction. Nihon Touyou Igaku Zassi 43:303, JapaneseCrossRefGoogle Scholar
  61. 61.
    Furukawa Y, Shiga Y, Hanyu N, Hashimoto Y (1995) Effect of Chinese herbal medicine on gastrointestinal motility and bowel obstruction. Jpn J Gastroenterol Surg 28:956, JapaneseCrossRefGoogle Scholar
  62. 62.
    Itoh T, Yamakawa J, Mai M (2002) The effect of the herbal medicine dai-kenchu-to on post-operative ileus. J Int Med Res 30:428PubMedCrossRefGoogle Scholar
  63. 63.
    Shibata C, Sasaki I, Naito H, Ueno T (1999) The herbal medicine Dai-Kenchu-Tou stimulates upper gut motility through cholinergic and 5-hydroxytryptamine 3 receptors in conscious dogs. Surgery 126:918PubMedCrossRefGoogle Scholar
  64. 64.
    Kurosawa S, Nishikawa S, Kaneko M, Ogiwara S (1998) The herbal medicine Dai-kenchu-to contracts guinea pig distal colon muscle through acetylcholine release*. Gastroenterology 114:A782CrossRefGoogle Scholar
  65. 65.
    Satoh K, Hayakawa T, Kase Y et al (2001) Mechanisms for contractile effect of Dai-kenchu-to in isolated guinea pig ileum. Dig Dis Sci 46:250–256PubMedCrossRefGoogle Scholar
  66. 66.
    Andoh T, Ishii K, Suzuki Y et al (1987) Characterization of a mammalian mutant with a camptothecin-resistant DNA topoisomerase I. Proc Natl Acad Sci U S A 84:5565–5569PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Negoro S, Fukuoka M, Masuda N et al (1991) Phase I study of weekly intravenous infusions of CPT-11, a new derivative of camptothecin, in the treatment of advanced non-small-cell lung cancer. J Natl Cancer Inst 83:1164–1168PubMedCrossRefGoogle Scholar
  68. 68.
    Fukuoka M, Niitani H, Suzuki A et al (1992) A phase II study of CPT-11, a new derivative of camptothecin, for previously untreated non-small-cell lung cancer. J Clin Oncol 10:16–20PubMedGoogle Scholar
  69. 69.
    Shimada Y, Yoshino M, Wakui A et al (1993) Phase II study of CPT-11, a new camptothecin derivative, in metastatic colorectal cancer. CPT-11 Gastrointestinal Cancer Study Group. J Clin Oncol 11:909–913PubMedGoogle Scholar
  70. 70.
    Masuda N, Fukuoka M, Kudoh S (1994) Phase I study of irinotecan and cisplatin with granulocyte colony-stimulating factor support for advanced non-small-cell lung cancer. J Clin Oncol 12:90–96PubMedGoogle Scholar
  71. 71.
    Kase Y, Hayakawa T, Aburada M et al (1997) Preventive effects of Hange-shashin-to on irinotecan hydrochloride-caused diarrhea and its relevance to the colonic prostaglandin E2 and water absorption in the rat. Jpn J Pharmacol 75:407–413PubMedCrossRefGoogle Scholar
  72. 72.
    Abigerges D, Armand J (1994) Irinotecan (CPT-11) high-dose escalation using intensive high-dose loperamide to control diarrhea. J Natl Cancer Inst 86:446–449PubMedCrossRefGoogle Scholar
  73. 73.
    Goncalves E, de Costa L, Abigerges D, Armand JP (1995) A new enkephalinase inhibitor as an alternative to loperamide in the prevention of diarrhea induced by CPT-11. J Clin Oncol 13:2144–2146PubMedGoogle Scholar
  74. 74.
    Kase Y, Hayakawa T, Takeda S et al (1996) Pharmacological studies on antidiarrheal effects of Hange-shashin-to. Biol Pharm Bull 19:1367–1370PubMedCrossRefGoogle Scholar
  75. 75.
    Rask-Madsen J (1986) Eicosanoids and their role in the pathogenesis of diarrhoeal diseases. Clin Gastroenterol 15:545–566PubMedGoogle Scholar
  76. 76.
    Rask-Madsen J, Bukhave K (1990) Influence on intestinal secretion of eicosanoids. J Intern Med Suppl 732:137–144PubMedCrossRefGoogle Scholar
  77. 77.
    Rivière PJ, Farmer SC, Burks TF, Porreca F (1991) Prostaglandin E2-induced diarrhea in mice: importance of colonic secretion. J Pharmacol Exp Ther 256:547–552PubMedGoogle Scholar
  78. 78.
    Kono T (2010) Topical application of hangeshashinto (TJ-14) in the treatment of chemotherapy-induced oral mucositis. World J Oncol. doi: 10.4021/wjon263w Google Scholar
  79. 79.
    Lalla RV, Pilbeam CC, Walsh SJ et al (2009) Role of the cyclooxygenase pathway in chemotherapy-induced oral mucositis: a pilot study. Support Care Cancer. doi: 10.1007/s00520-009-0635-1 PubMedCentralGoogle Scholar
  80. 80.
    Scardina GA, Pisano T, Messina P (2010) Oral mucositis. Review of literature. N Y State Dent J 76:34–38PubMedGoogle Scholar
  81. 81.
    Napenas JJ, Shetty KV, Streckfus CF (2007) Oral mucositis: review of pathogenesis, diagnosis, prevention, and management. Gen Dent 55:335–344, quiz 345–6, 376PubMedGoogle Scholar
  82. 82.
    Scully C, Sonis S (2006) Oral mucositis. Oral Dis 14:505–515Google Scholar
  83. 83.
    Sonis ST (2004) The pathobiology of mucositis. Nat Rev Cancer 4:277–284. doi: 10.1038/nrc1318 PubMedCrossRefGoogle Scholar
  84. 84.
    Jeong JS, Ryu BH, Kim JS et al (2010) Bojungikki-tang for cancer-related fatigue: a pilot randomized clinical trial. Integr Cancer Ther 9:331–338. doi: 10.1177/1534735410383170 PubMedCrossRefGoogle Scholar
  85. 85.
    Sood A, Barton DL, Bauer BA, Loprinzi CL (2007) A critical review of complementary therapies for cancer-related fatigue. Integr Cancer Ther 6:8–13. doi: 10.1177/1534735406298143 PubMedCrossRefGoogle Scholar
  86. 86.
    Scheid V, Bensky D, Ellis A (1990) (2009) Chinese herbal medicine: formulas & strategies. Eastland Press, Seattle, WAGoogle Scholar
  87. 87.
    Kobayashi H, Mizuno N, Teramae H (2004) The effects of Hochu-ekki-to in patients with atopic dermatitis resistant to conventional treatment. Int J Tissue React 26:113–117PubMedGoogle Scholar
  88. 88.
    Kuratsune H (1997) Effect of Kampo Medicine, “Hochu-ekki-to”, on chronic fatigue syndrome. Clin Res 74:1837–1845Google Scholar
  89. 89.
    Wang X, Takahashi T, Zhu S (2004) Effect of Hochu-ekki-to(TJ-41), a Japanese herbal medicine, on daily activity in a murine model of chronic fatigue syndrome. Evid Based Complement Alternat Med 1:203–206PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Satoh N, Sakai S, Kogure T et al (2005) A randomized double blind placebo-controlled clinical trial of Hochuekkito, a traditional herbal medicine, in the treatment of elderly patients with weakness N of one and responder restricted design. Phytomedicine 12:549–554PubMedCrossRefGoogle Scholar
  91. 91.
    Shin H-Y, Shin C-H, Shin T-Y et al (2003) Effect of bojungikki-tang on lipopolysaccharide-induced cytokine production from peripheral blood mononuclear cells of chronic fatigue syndrome patients. Immunopharmacol Immunotoxicol 25:491–501. doi: 10.1081/IPH-120026435 PubMedCrossRefGoogle Scholar
  92. 92.
    Shinozuka N, Tatsumi K, Nakamura A (2007) The traditional herbal medicine Hochuekkito improves systemic inflammation in patients with chronic obstructive pulmonary disease. J Am Geriatr Soc 55:313–314PubMedCrossRefGoogle Scholar
  93. 93.
    Tatsumi K, Shinozuka N, Nakayama K et al (2009) Hochuekkito improves systemic inflammation and nutritional status in elderly patients with chronic obstructive pulmonary disease. J Am Geriatr Soc 57:169–170. doi: 10.1111/j.1532-5415.2009.02034.x PubMedCrossRefGoogle Scholar
  94. 94.
    Kusunoki H, Haruma K, Hata J et al (2010) Efficacy of Rikkunshito, a traditional Japanese medicine (Kampo), in treating functional dyspepsia. Intern Med 49:2195–2202PubMedCrossRefGoogle Scholar
  95. 95.
    Takahashi T, Endo S, Nakajima K et al (2009) Effect of rikkunshito, a chinese herbal medicine, on stasis in patients after pylorus-preserving gastrectomy. World J Surg 33:296–302. doi: 10.1007/s00268-008-9854-8 PubMedCrossRefGoogle Scholar
  96. 96.
    Oyachi N, Takano K, Hasuda N, Arai H (2008) Effects of Rikkunshi‐to on infantile hypertrophic pyloric stenosis, refractory to atropine. Pediatr Int 50:581–583PubMedCrossRefGoogle Scholar
  97. 97.
    Oka T, Tamagawa Y, Hayashida S et al (2007) Rikkunshi-to attenuates adverse gastrointestinal symptoms induced by fluvoxamine. Biopsychosoc Med 1:21. doi: 10.1186/1751-0759-1-21 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yagi M, Homma S, Kubota M, Iinuma Y (2004) The herbal medicine Rikkunshi-to stimulates and coordinates the gastric myoelectric activity in post-operative dyspeptic children after gastrointestinal surgery. Pediatr Surg Int 19:760–765PubMedCrossRefGoogle Scholar
  99. 99.
    Kawahara H, Okuyama H, Nose K et al (2010) Physiological and clinical characteristics of gastroesophageal reflux after congenital diaphragmatic hernia repair. J Pediatr Surg 45:2346–2350. doi: 10.1016/j.jpedsurg.2010.08.029 PubMedCrossRefGoogle Scholar
  100. 100.
    Hattori T (2010) Rikkunshito and ghrelin. Int J Pept. doi: 10.1155/2010/283549 PubMedPubMedCentralGoogle Scholar
  101. 101.
    Takeda H, Sadakane C, Hattori T et al (2008) Rikkunshito, an herbal medicine, suppresses cisplatin-induced anorexia in rats via 5-HT2 receptor antagonism. Gastroenterology 134:2004–2013. doi: 10.1053/j.gastro.2008.02.078 PubMedCrossRefGoogle Scholar
  102. 102.
    Fujitsuka N, Asakawa A, Hayashi M et al (2009) Selective serotonin reuptake inhibitors modify physiological gastrointestinal motor activities via 5-HT2c receptor and acyl ghrelin. Biol Psychiatry 65:748–759. doi: 10.1016/j.biopsych.2008.10.031 PubMedCrossRefGoogle Scholar
  103. 103.
    Harasawa S, Miyoshi A, Miwa T, Masamune O (1998) Double-blind multicenter post-marketing clinical trial of TJ-43 TSUMURA Rikkunshi-to for the treatment of dysmotility-like dyspepsia. J Clin Exp Med 187:207–229, JapaneseGoogle Scholar
  104. 104.
    Tomono H, Ito Y, Watanabe T (2006) Successful antiemetic treatment of TSUMURA Rikkunshi-to Extract Granules for ethical use in addition to other antiemetic agents in neoadjuvant chemotherapy for an advanced breast cancer patient. Gan To Kagaku Ryoho 33:1129–1131PubMedGoogle Scholar
  105. 105.
    Takeda H, Hattori T, Kase Y (2009) Effects of rikkunshito on anorexia induced by anticancer agents. Ulcer Res 36(2):211–215Google Scholar
  106. 106.
    Grundy D, Al-Chaer ED, Aziz Q et al (2006) Fundamentals of neurogastroenterology: basic science. Gastroenterology 130:1391–1411. doi: 10.1053/j.gastro.2005.11.060 PubMedCrossRefGoogle Scholar
  107. 107.
    Gershon M (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132:397–414PubMedCrossRefGoogle Scholar
  108. 108.
    De Vry J, Schreiber R (2000) Effects of selected serotonin 5-HT1 and 5-HT2 receptor agonists on feeding behavior: possible mechanisms of action. Neurosci Biobehav Rev 24:341–353PubMedCrossRefGoogle Scholar
  109. 109.
    Takeda H, Muto S, Hattori T et al (2010) Rikkunshito ameliorates the aging-associated decrease in ghrelin receptor reactivity via phosphodiesterase III inhibition. Endocrinology 151:244–252. doi: 10.1210/en.2009-0633 PubMedCrossRefGoogle Scholar
  110. 110.
    Kohno D, Nakata M, Maekawa F et al (2007) Leptin suppresses ghrelin-induced activation of neuropeptide y neurons in the arcuate nucleus via phosphatidylinositol 3-kinase- and phosphodiesterase 3-mediated pathway. Endocrinology 148:2251–2263. doi: 10.1210/en.2006-1240 PubMedCrossRefGoogle Scholar
  111. 111.
    Niswender K, Morton G, Stearns W, Rhodes C (2001) Intracellular signalling: key enzyme in leptin-induced anorexia. Nature 413:794–795. doi: 10.1038/35101657 PubMedCrossRefGoogle Scholar
  112. 112.
    Neary NM, Small CJ, Wren AM et al (2004) Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J Clin Endocrinol Metab 89:2832–2836. doi: 10.1210/jc.2003-031768 PubMedCrossRefGoogle Scholar
  113. 113.
    Laferrère B, Abraham C, Russell CD, Bowers CY (2005) Growth hormone releasing peptide-2 (GHRP-2), like ghrelin, increases food intake in healthy men. J Clin Endocrinol Metab 90:611–614. doi: 10.1210/jc.2004-1719 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Matsumura T, Arai M, Yonemitsu Y et al (2010) The traditional Japanese medicine Rikkunshito increases the plasma level of ghrelin in humans and mice. J Gastroenterol 45:300–307. doi: 10.1007/s00535-009-0166-z PubMedCrossRefGoogle Scholar
  115. 115.
    Halford J, Harrold J, Boyland E, Lawton C (2007) Serotonergic drugs: effects on appetite expression and use for the treatment of obesity. Drugs 67:27–55PubMedCrossRefGoogle Scholar
  116. 116.
    Vickers SP, Dourish CT, Kennett GA (2001) Evidence that hypophagia induced by d-fenfluramine and d-norfenfluramine in the rat is mediated by 5-HT2C receptors. Neuropharmacology 41:200–209PubMedCrossRefGoogle Scholar
  117. 117.
    Vickers SP, Easton N, Webster LJ et al (2003) Oral administration of the 5-HT2Creceptor agonist, mCPP, reduces body weight gain in rats over 28 days as a result of maintained hypophagia. Psychopharmacology (Berl) 167:274–280. doi: 10.1007/s00213-002-1378-6 CrossRefGoogle Scholar
  118. 118.
    Wang W, Danielsson A, Svanberg E, Lundholm K (2003) Lack of effects by tricyclic antidepressant and serotonin inhibitors on anorexia in MCG 101 tumor-bearing mice with eicosanoid-related cachexia. Nutrition 19:47–53PubMedCrossRefGoogle Scholar
  119. 119.
    Makarenko IG, Meguid MM, Gatto L et al (2005) Hypothalamic 5-HT1B-receptor changes in anorectic tumor bearing rats. Neurosci Lett 376:71–75. doi: 10.1016/j.neulet.2004.11.026 PubMedCrossRefGoogle Scholar
  120. 120.
    Makarenko IG, Meguid MM, Gatto L et al (2003) Decreased NPY innervation of the hypothalamic nuclei in rats with cancer anorexia. Brain Res 961:100–108PubMedCrossRefGoogle Scholar
  121. 121.
    Sakurada S, Shido O, Sugimoto N et al (2000) Autonomic and behavioural thermoregulation in starved rats. J Physiol (Lond) 526:417–424, Pt 2PubMedCentralCrossRefGoogle Scholar
  122. 122.
    Zhao Z, Sakata I, Okubo Y et al (2008) Gastric leptin, but not estrogen and somatostatin, contributes to the elevation of ghrelin mRNA expression level in fasted rats. J Endocrinol 196:529–538. doi: 10.1677/JOE-07-0300 PubMedCrossRefGoogle Scholar
  123. 123.
    Turrin N, Ilyin S, Gayle D (2004) Interleukin-1beta system in anorectic catabolic tumor-bearing rats. Curr Opin Clin Metab Care 7:419–426CrossRefGoogle Scholar
  124. 124.
    Gyengesi E, Liu Z-W, D’Agostino G et al (2010) Corticosterone regulates synaptic input organization of POMC and NPY/AgRP neurons in adult mice. Endocrinology 151:5395–5402. doi: 10.1210/en.2010-0681 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Chen C-Y, Fujimiya M, Laviano A et al (2010) Modulation of ingestive behavior and gastrointestinal motility by ghrelin in diabetic animals and humans. J Chin Med Assoc 73:225–229. doi: 10.1016/S1726-4901(10)70048-4 PubMedCrossRefGoogle Scholar
  126. 126.
    Shintani F, Kanba S, Nakaki T (1993) Interleukin-1 beta augments release of norepinephrine, dopamine, and serotonin in the rat anterior hypothalamus. J Neurosci 13:3574–3581PubMedGoogle Scholar
  127. 127.
    Chuang J (2010) Ghrelin’s roles in stress, mood, and anxiety regulation. Int J Pept 2010:1–5CrossRefGoogle Scholar
  128. 128.
    Kamiji MM, Inui A (2007) Neuropeptide y receptor selective ligands in the treatment of obesity. Endocr Rev 28:664–684. doi: 10.1210/er.2007-0003 PubMedCrossRefGoogle Scholar
  129. 129.
    Heisler LK, Pronchuk N, Nonogaki K et al (2007) Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation. J Neurosci 27:6956–6964. doi: 10.1523/JNEUROSCI.2584-06.2007 PubMedCrossRefGoogle Scholar
  130. 130.
    Date Y, Murakami N, Toshinai K et al (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123:1120–1128PubMedCrossRefGoogle Scholar
  131. 131.
    Fujino K, Inui A, Asakawa A et al (2003) Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed rats. J Physiol (Lond) 550:227–240. doi: 10.1113/jphysiol.2003.040600 CrossRefGoogle Scholar
  132. 132.
    Muroya S, Yada T, Shioda S, Takigawa M (1999) Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y. Neurosci Lett 264:113–116PubMedCrossRefGoogle Scholar
  133. 133.
    Takaya K, Ariyasu H, Kanamoto N et al (2000) Ghrelin strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab 85:4908–4911PubMedCrossRefGoogle Scholar
  134. 134.
    Arvat E, Maccario M, Di Vito L et al (2001) Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. J Clin Endocrinol Metab 86:1169–1174PubMedGoogle Scholar
  135. 135.
    Hataya Y, Akamizu T, Takaya K et al (2001) A low dose of ghrelin stimulates growth hormone (GH) release synergistically with GH-releasing hormone in humans. J Clin Endocrinol Metab 86:4552PubMedCrossRefGoogle Scholar
  136. 136.
    Akamizu T, Takaya K, Irako T et al (2004) Pharmacokinetics, safety, and endocrine and appetite effects of ghrelin administration in young healthy subjects. Eur J Endocrinol 150:447–455PubMedCrossRefGoogle Scholar
  137. 137.
    Gibney J, Healy ML, Sonksen PH (2007) The growth hormone/insulin-like growth factor-I axis in exercise and sport. Endocr Rev 28:603–624. doi: 10.1210/er.2006-0052 PubMedCrossRefGoogle Scholar
  138. 138.
    Velloso CP (2008) Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol 154:557–568. doi: 10.1038/bjp.2008.153 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Gonzalez-Rey E, Chorny A, Delgado M (2006) Therapeutic action of ghrelin in a mouse model of colitis. Gastroenterology 130:1707–1720. doi: 10.1053/j.gastro.2006.01.041 PubMedCrossRefGoogle Scholar
  140. 140.
    Waseem T, Duxbury M, Ito H et al (2008) Exogenous ghrelin modulates release of pro-inflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Surgery 143:334–342. doi: 10.1016/j.surg.2007.09.039 PubMedCrossRefGoogle Scholar
  141. 141.
    Dixit VD, Schaffer EM, Pyle RS et al (2004) Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest 114:57–66. doi: 10.1172/JCI21134 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Wu R, Dong W, Zhou M et al (2007) Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. Am J Respir Crit Care Med 176:805–813. doi: 10.1164/rccm.200604-511OC PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Theil M-M, Miyake S, Mizuno M et al (2009) Suppression of experimental autoimmune encephalomyelitis by ghrelin. J Immunol 183:2859–2866. doi: 10.4049/jimmunol.0803362 PubMedCrossRefGoogle Scholar
  144. 144.
    Akamizu T, Kangawa K (2010) Ghrelin for cachexia. J Cachex Sarcopenia Muscle 1:169–176. doi: 10.1007/s13539-010-0011-5 CrossRefGoogle Scholar
  145. 145.
    Inui A (2002) Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J Clin 52:72–91PubMedCrossRefGoogle Scholar
  146. 146.
    Huang C, Lin S, Liao P, Young S (2008) The immunopharmaceutical effects and mechanisms of herb medicine. Cell Mol Immunol 5:23–31PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Eng C (2010) Are herbal medicines ripe for the cancer clinic? Sci Transl Med 2:45ps41PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Psychosomatic Internal MedicineKagoshima University Graduate School of Medical & Dental SciencesKagoshimaJapan

Personalised recommendations