Skip to main content

Challenging the Paradigms of Experimental TBI Models: From Preclinical to Clinical Practice

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

Despite prodigious advances in TBI neurobiology research and a broad arsenal of animal models mimicking different aspects of human brain injury, this field has repeatedly experienced collective failures to translate from animals to humans, particularly in the area of therapeutics. This lack of success stems from variability and inconsistent standardization across models and laboratories, as well as insufficient objective and quantifiable diagnostic measures (biomarkers, high-resolution imaging), understanding of the vast clinical heterogeneity, and clinically centered conception of the TBI animal models. Significant progress has been made by establishing well-defined standards for reporting animal studies with “preclinical common data elements” (CDE), and for the reliability and reproducibility in preclinical TBI therapeutic research with the Operation Brain Trauma Therapy (OBTT) consortium. However, to break the chain of failures and achieve a therapeutic breakthrough in TBI will probably require the use of higher species models, specific mechanism-based injury models by which to theranostically targeted treatment portfolios are tested, more creative concepts of therapy intervention including combination therapy and regeneration neurobiology strategies, and the adoption of dosing regimens based upon pharmacokinetic—pharmacodynamic (PK-PD) studies and guided by the injury severity and TBI recovery process.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Smith DH, Hicks RR, Johnson VE, Bergstrom DA, Cummings DM, Noble LJ, Hovda D, Whalen M, Ahlers ST, LaPlaca M, Tortella FC, Duhaime AC, Dixon CE (2015) Pre-clinical traumatic brain injury common data elements: toward a common language across laboratories. J Neurotrauma 32:1725

    Article  PubMed  Google Scholar 

  2. Manley GT, Diaz-Arrastia R, Brophy M, Engel D, Goodman C, Gwinn K, Veenstra TD, Ling G, Ottens AK, Tortella F, Hayes RL (2010) Common data elements for traumatic brain injury: recommendations from the biospecimens and biomarkers working group. Arch Phys Med Rehabil 91:1667–1672

    Article  PubMed  Google Scholar 

  3. Kochanek PM, Bramlett HM, Dixon CE, Shear DA, Dietrich WD, Schmid KE, Mondello S, Wang KKW, Hayes RL, Povlishock JT, Tortella FC (2016) Operation brain trauma therapy: approach to modeling, therapy evaluation, drug selection, and biomarker assessments, for a multi-center pre-clinical drug screening consortium for acute therapies in severe traumatic brain injury. J Neurotrauma 33:513

    Article  PubMed  Google Scholar 

  4. Tortella FC, Leung LY (2015) Traumatic brain injury and polytrauma in theaters of combat: the case for neurotrauma resuscitation? Shock 44(Suppl 1):17–26

    Article  PubMed  Google Scholar 

  5. Briones TL (2015) Chapter 3 animal models of traumatic brain injury: is there an optimal model that parallels human brain injury? Annu Rev Nurs Res 33:31–73

    Article  PubMed  Google Scholar 

  6. Wang HC, Sun CF, Chen H, Chen MS, Shen G, Ma YB, Wang BD (2014) Where are we in the modelling of traumatic brain injury? Models complicated by secondary brain insults. Brain Inj 28:1491–1503

    Article  PubMed  Google Scholar 

  7. Bondi CO, Semple BD, Noble-Haeusslein LJ, Osier ND, Carlson SW, Dixon CE, Giza CC, Kline AE (2015) Found in translation: understanding the biology and behavior of experimental traumatic brain injury. Neurosci Biobehav Rev 58:123

    Article  PubMed  Google Scholar 

  8. Petraglia AL, Dashnaw ML, Turner RC, Bailes JE (2014) Models of mild traumatic brain injury: translation of physiological and anatomic injury. Neurosurgery 75(Suppl 4):S34–S49

    Article  PubMed  Google Scholar 

  9. Panzer MB, Wood GW, Bass CR (2014) Scaling in neurotrauma: how do we apply animal experiments to people? Exp Neurol 261:120–126

    Article  PubMed  Google Scholar 

  10. Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marklund N, Hillered L (2011) Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol 164:1207–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papa L, Ramia MM, Edwards D, Johnson BD, Slobounov SM (2015) Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion. J Neurotrauma 32:661–673

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mucha A, Collins MW, Elbin RJ, Furman JM, Troutman-Enseki C, DeWolf RM, Marchetti G, Kontos AP (2014) A brief vestibular/ocular motor screening (VOMS) assessment to evaluate concussions: preliminary findings. Am J Sports Med 42:2479–2486

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goldstein LE, McKee AC, Stanton PK (2014) Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy. Alzheimers Res Ther 6:64

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ojo JO, Mouzon BC, Crawford F (2016) Repetitive head trauma, chronic traumatic encephalopathy and tau: challenges in translating from mice to men. Exp Neurol 275:389

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank C. Tortella S.T., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tortella, F.C. (2016). Challenging the Paradigms of Experimental TBI Models: From Preclinical to Clinical Practice. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_40

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics