Skip to main content

Detecting Behavioral Deficits Post Traumatic Brain Injury in Rats

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

Traumatic brain injury (TBI), ranging from mild to severe, almost always elicits an array of behavioral deficits in injured subjects. Some of these TBI-induced behavioral deficits include cognitive and vestibulomotor deficits as well as anxiety and other consequences. Rodent models of TBI have been (and still are) fundamental in establishing many of the pathophysiological mechanisms of TBI. Animal models are also utilized in screening and testing pharmacological effects of potential therapeutic agents for brain injury treatment. This chapter details validated protocols for each of these behavioral deficits post traumatic brain injury in Sprague-Dawley male rats. The elevated plus maze (EPM) protocol is described for assessing anxiety-like behavior; the Morris water maze protocol for assessing cognitive deficits in learning memory and spatial working memory and the rotarod test for assessing vestibulomotor deficits.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Blennow K, Hardy J, Zetterberg H (2012) The neuropathology and neurobiology of traumatic brain injury. Neuron 76:886–899

    Article  CAS  PubMed  Google Scholar 

  2. Masel BE, DeWitt DS (2010) Traumatic brain injury: a disease process, not an event. J Neurotrauma 27:1529–1540

    Article  PubMed  Google Scholar 

  3. Ling GS, Ecklund JM (2011) Traumatic brain injury in modern war. Curr Opin Anaesthesiol 24:124–130

    Article  PubMed  Google Scholar 

  4. Bazarian JJ, Cernak I, Noble-Haeusslein L, Potolicchio S, Temkin N (2009) Long-term neurologic outcomes after traumatic brain injury. J Head Trauma Rehabil 24:439–451

    Article  PubMed  Google Scholar 

  5. Cernak I, Noble-Haeusslein LJ (2010) Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 30:255–266

    Article  PubMed  Google Scholar 

  6. Soble JR, Spanierman LB, Fitzgerald Smith J (2013) Neuropsychological functioning of combat veterans with posttraumatic stress disorder and mild traumatic brain injury. J Clin Exp Neuropsychol 35:551–561

    Article  PubMed  Google Scholar 

  7. Carlson KF, Kehle SM, Meis LA, Greer N, Macdonald R, Rutks I, Sayer NA, Dobscha SK, Wilt TJ (2011) Prevalence, assessment, and treatment of mild traumatic brain injury and posttraumatic stress disorder: a systematic review of the evidence. J Head Trauma Rehabil 26:103–115

    Article  PubMed  Google Scholar 

  8. Nelson NW, Hoelzle JB, McGuire KA, Ferrier-Auerbach AG, Charlesworth MJ, Sponheim SR (2011) Neuropsychological evaluation of blast-related concussion: illustrating the challenges and complexities through OEF/OIF case studies. Brain Inj 25:511–525

    Article  PubMed  Google Scholar 

  9. Warden DL, French L (2005) Traumatic brain injury in the war zone. N Engl J Med 353:633–634

    Article  CAS  PubMed  Google Scholar 

  10. Silver JM, McAllister TW, Arciniegas DB (2009) Depression and cognitive complaints following mild traumatic brain injury. Am J Psychiatry 166:653–661

    Article  PubMed  Google Scholar 

  11. Kalueff AV (2007) Neurobiology of memory and anxiety: from genes to behavior. Neural Plast 2007:78171

    PubMed  PubMed Central  Google Scholar 

  12. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29:1193–1205

    Article  CAS  PubMed  Google Scholar 

  14. Ponsford J, Downing M, Olver J, Ponsford M, Acher R, Carty M, Spitz G (2014) Longitudinal follow-up of patients with traumatic brain injury: outcome at 2, 5, and 10-years post-injury. J Neurotrauma 31:64–77

    Article  PubMed  Google Scholar 

  15. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  16. Morris RG, Hagan JJ, Rawlins JN (1986) Allocentric spatial learning by hippocampectomised rats: a further test of the “spatial mapping” and “working memory” theories of hippocampal function. Q J Exp Psychol B 38:365–395

    CAS  PubMed  Google Scholar 

  17. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scherer MR, Burrows H, Pinto R, Littlefield P, French LM, Tarbett AK, Schubert MC (2011) Evidence of central and peripheral vestibular pathology in blast-related traumatic brain injury. Otol Neurotol 32:571–580

    Article  PubMed  Google Scholar 

  19. Scherer MR, Schubert MC (2009) Traumatic brain injury and vestibular pathology as a comorbidity after blast exposure. Phys Ther 89:980–992

    Article  PubMed  Google Scholar 

  20. Hamm RJ (2001) Neurobehavioral assessment of outcome following traumatic brain injury in rats: an evaluation of selected measures. J Neurotrauma 18:1207–1216

    Article  CAS  PubMed  Google Scholar 

  21. Hamm RJ, Pike BR, O'Dell DM, Lyeth BG, Jenkins LW (1994) The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma 11:187–196

    Article  CAS  PubMed  Google Scholar 

  22. Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK (2004) Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev 28:365–378

    Article  PubMed  Google Scholar 

  23. Hamm RJ, White-Gbadebo DM, Lyeth BG, Jenkins LW, Hayes RL (1992) The effect of age on motor and cognitive deficits after traumatic brain injury in rats. Neurosurgery 31:1072–1077, discussion 1078

    Article  CAS  PubMed  Google Scholar 

  24. Reid WM, Rolfe A, Register D, Levasseur JE, Churn SB, Sun D (2010) Strain-related differences after experimental traumatic brain injury in rats. J Neurotrauma 27:1243–1253

    Article  PubMed  PubMed Central  Google Scholar 

  25. Finnie J (2001) Animal models of traumatic brain injury: a review. Aust Vet J 79:628–633

    Article  CAS  PubMed  Google Scholar 

  26. Morganti-Kossmann MC, Yan E, Bye N (2010) Animal models of traumatic brain injury: is there an optimal model to reproduce human brain injury in the laboratory? Injury 41(Suppl 1):S10–S13

    Article  PubMed  Google Scholar 

  27. O'Connor WT, Smyth A, Gilchrist MD (2011) Animal models of traumatic brain injury: a critical evaluation. Pharmacol Ther 130:106–113

    Article  PubMed  Google Scholar 

  28. Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cernak I (2005) Animal models of head trauma. NeuroRx 2:410–422

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brown GM, Martin JB (1974) Corticosterone, prolactin, and growth hormone responses to handling and new environment in the rat. Psychosom Med 36:241–247

    Article  CAS  PubMed  Google Scholar 

  31. Kvetnansky R, Sun CL, Lake CR, Thoa N, Torda T, Kopin IJ (1978) Effect of handling and forced immobilization on rat plasma levels of epinephrine, norepinephrine, and dopamine-beta-hydroxylase. Endocrinology 103:1868–1874

    Article  CAS  PubMed  Google Scholar 

  32. Claassen V (1994) Neglected factors in pharmacology and neuroscience research: biopharmaceutics, animal characteristics, maintenance, testing conditions. Techniques in the behavioral and neural sciences. Elsevier, Amsterdam, New York. xiv, 486 p

    Google Scholar 

  33. National Research Council (U.S.) Committee for the Update of the Guide for the Care and Use of Laboratory Animals., Institute for Laboratory Animal Research (U.S.), and National Academies Press (U.S.) (2011) Guide for the care and use of laboratory animals, 8th ed. National Academies Press, Washington, DC. xxv, 220 p

    Google Scholar 

  34. Tejada J, Bosco GG, Morato S, Roque AC (2009) Characterization of rat behavior in the elevated plus-maze using a directed graph. J Neurosci Methods 184:251–255

    Article  PubMed  Google Scholar 

  35. Tompkins P, Tesiram Y, Lerner M, Gonzalez LP, Lightfoot S, Rabb CH, Brackett DJ (2013) Brain injury: neuro-inflammation, cognitive deficit, and magnetic resonance imaging in a model of blast induced traumatic brain injury. J Neurotrauma 30:1888–1897

    Article  PubMed  Google Scholar 

  36. Awwad HO, Gonzalez LP, Tompkins P, Lerner M, Brackett DJ, Awasthi V, Standifer KM (2015) Blast overpressure waves induce transient anxiety and regional changes in cerebral glucose metabolism and delayed hyperarousal in rats. Front Neurol 6: 132, doi:10.3389/fneuro.2015.00132. eCollection 2015

  37. Gottshall K (2011) Vestibular rehabilitation after mild traumatic brain injury with vestibular pathology. NeuroRehabilitation 29:167–171

    PubMed  Google Scholar 

  38. Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc Am Pharm Assoc (Baltimore) 46:208–209

    Article  CAS  Google Scholar 

  39. Cohen H, Liu T, Kozlovsky N, Kaplan Z, Zohar J, Mathe AA (2012) The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology 37:350–363

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Kelly M. Standifer, for her support and mentorship on this project that was funded by the Department of the Army W81XWH-09-1-0443 (KMS); Larry P. Gonzalez for his expertise in behavioral sciences and training mentorship in these experimental methods; Paul Tompkins for operating the blast wave generator to induce TBI; and Charles Vorhees for his helpful correspondence regarding MWM paradigms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hibah O. Awwad Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Awwad, H.O. (2016). Detecting Behavioral Deficits Post Traumatic Brain Injury in Rats. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_31

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics