Skip to main content

Cognitive Evaluation Using Morris Water Maze in Neurotrauma

  • Protocol
  • First Online:
Injury Models of the Central Nervous System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

The Morris water maze (MWM) task is one of the most widely used and versatile tools in behavioral neuroscience for evaluating spatial learning and memory. With regard to detecting cognitive deficits following central nervous system (CNS) injuries, MWM has been commonly utilized in various animal models of neurotrauma, such as fluid percussion injury (FPI), cortical controlled impact (CCI) injury, weight-drop impact injury, and penetrating ballistic-like brain injury (PBBI). More importantly, it serves as a therapeutic index for assessing the efficacy of treatment interventions on cognitive performance following neurotrauma. Thus, it is critical to design an MWM testing paradigm that is sensitive yet discriminating for the purpose of evaluating potential therapeutic interventions. In this chapter, we discuss how multiple test manipulations, including the size of platform, numbers of trials per day, the frequency of retesting intervals, and the texture of platform surface, impact MWM’s ability to detect cognitive deficits using a rat model of PBBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  2. McNamara RK, Skelton RW (1993) The neuropharmacological and neurochemical basis of place learning in the Morris water maze. Brain Res Brain Res Rev 18:33–49

    Article  CAS  PubMed  Google Scholar 

  3. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  4. Hellawell DJ, Taylor RT, Pentland B (1999) Cognitive and psychosocial outcome following moderate or severe traumatic brain injury. Brain Inj 13:489–504

    Article  CAS  PubMed  Google Scholar 

  5. Shear DA, Galani R, Hoffman SW, Stein DG (2002) Progesterone protects against necrotic damage and behavioral abnormalities caused by traumatic brain injury. Exp Neurol 178:59–67

    Article  CAS  PubMed  Google Scholar 

  6. Shear DA, Tate MC, Archer DR, Hoffman SW, Hulce VD, Laplaca MC, Stein DG (2004) Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res 1026:11–22

    Article  CAS  PubMed  Google Scholar 

  7. Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  CAS  PubMed  Google Scholar 

  8. Smith DH, Okiyama K, Thomas MJ, Claussen B, McIntosh TK (1991) Evaluation of memory dysfunction following experimental brain injury using the Morris water maze. J Neurotrauma 8:259–269

    Article  CAS  PubMed  Google Scholar 

  9. Cain DP, Boon F, Corcoran ME (2006) Thalamic and hippocampal mechanisms in spatial navigation: a dissociation between brain mechanisms for learning how versus learning where to navigate. Behav Brain Res 170:241–256

    Article  PubMed  Google Scholar 

  10. Packard MG (2009) Anxiety, cognition, and habit: a multiple memory systems perspective. Brain Res 1293:121–128

    Article  CAS  PubMed  Google Scholar 

  11. Devan BD, McDonald RJ, White NM (1999) Effects of medial and lateral caudate-putamen lesions on place- and cue-guided behaviors in the water maze: relation to thigmotaxis. Behav Brain Res 100:5–14

    Article  CAS  PubMed  Google Scholar 

  12. Shear DA, Lu XC, Bombard MC, Pedersen R, Chen Z, Davis A, Tortella FC (2010) Longitudinal characterization of motor and cognitive deficits in a model of penetrating ballistic-like brain injury. J Neurotrauma 27:1911–1923

    Article  PubMed  Google Scholar 

  13. Hoffman SW, Fulop Z, Stein DG (1994) Bilateral frontal cortical contusion in rats: behavioral and anatomic consequences. J Neurotrauma 11:417–431

    Article  CAS  PubMed  Google Scholar 

  14. DiMattia BD, Kesner RP (1988) Spatial cognitive maps: differential role of parietal cortex and hippocampal formation. Behav Neurosci 102:471–480

    Article  CAS  PubMed  Google Scholar 

  15. Hamm RJ, Dixon CE, Gbadebo DM, Singha AK, Jenkins LW, Lyeth BG, Hayes RL (1992) Cognitive deficits following traumatic brain injury produced by controlled cortical impact. J Neurotrauma 9:11–20

    Article  CAS  PubMed  Google Scholar 

  16. Bramlett HM, Green EJ, Dietrich WD (1997) Hippocampally dependent and independent chronic spatial navigational deficits following parasagittal fluid percussion brain injury in the rat. Brain Res 762:195–202

    Article  CAS  PubMed  Google Scholar 

  17. Beaumont A, Marmarou A, Czigner A, Yamamoto M, Demetriadou K, Shirotani T, Marmarou C, Dunbar J (1999) The impact-acceleration model of head injury: injury severity predicts motor and cognitive performance after trauma. Neurol Res 21:742–754

    Article  CAS  PubMed  Google Scholar 

  18. Fox GB, Faden AI (1998) Traumatic brain injury causes delayed motor and cognitive impairment in a mutant mouse strain known to exhibit delayed Wallerian degeneration. J Neurosci Res 53:718–727

    Article  CAS  PubMed  Google Scholar 

  19. Hamm RJ, Temple MD, Pike BR, O’Dell DM, Buck DL, Lyeth BG (1996) Working memory deficits following traumatic brain injury in the rat. J Neurotrauma 13:317–323

    Article  CAS  PubMed  Google Scholar 

  20. Williams AJ, Hartings JA, Lu XC, Rolli ML, Dave JR, Tortella FC (2005) Characterization of a new rat model of penetrating ballistic brain injury. J Neurotrauma 22:313–331

    Article  PubMed  Google Scholar 

  21. Williams AJ, Hartings JA, Lu XC, Rolli ML, Tortella FC (2006) Penetrating ballistic-like brain injury in the rat: differential time courses of hemorrhage, cell death, inflammation, and remote degeneration. J Neurotrauma 23:1828–1846

    Article  PubMed  Google Scholar 

  22. Williams AJ, Ling GS, Tortella FC (2006) Severity level and injury track determine outcome following a penetrating ballistic-like brain injury in the rat. Neurosci Lett 408:183–188

    Article  CAS  PubMed  Google Scholar 

  23. Chen Z, Tortella FC, Dave JR, Marshall VS, Clarke DL, Sing G, Du F, Lu XC (2009) Human amnion-derived multipotent progenitor cell treatment alleviates traumatic brain injury-induced axonal degeneration. J Neurotrauma 26:1987–1997

    Article  PubMed  Google Scholar 

Download references

Disclaimers

The views of the authors do not purport or reflect the position of the Department of the Army or the Department of Defense (para 4-3, AR 360-5). The authors declare that there are no conflicts of interest in this protocol. This research is funded by Combat Casualty Care Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Deng-Bryant Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Deng-Bryant, Y., Leung, L.Y., Caudle, K., Tortella, F., Shear, D. (2016). Cognitive Evaluation Using Morris Water Maze in Neurotrauma. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics