Skip to main content

Experimental Models Combining TBI, Hemorrhagic Shock, and Hypoxemia

  • Protocol
  • First Online:
Injury Models of the Central Nervous System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

Animal models of traumatic brain injury (TBI) provide important tools for studying the pathobiology of brain trauma and for evaluating therapeutic or diagnostic targets. Incorporation of additional insults such as hemorrhagic shock (HS) and/or hypoxemia (HX) into these models more closely recreates clinical scenarios as TBI often occurs in conjunction with these systemic insults (i.e., polytrauma). We have developed a rat model of polytrauma that combines penetrating TBI, HS and HX. Following brain trauma, HX was induced by reducing the inspired oxygen while HS was induced by withdrawing blood to lower the mean arterial pressure. The physiological, histological, and behavioral aspects of this animal model have been characterized and have demonstrated exacerbating effects of systemic insults on penetrating TBI. As such, this model may facilitate the use of simultaneous assessments of multiple mechanisms and provide a platform for testing novel diagnostic and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelly JF, Ritenour AE, McLaughlin DF et al (2008) Injury severity and causes of death from Operation Iraqi Freedom and Operation Enduring Freedom: 2003-2004 versus 2006. J Trauma 64(2 Suppl):S21–S26, discussion S26–S27

    Article  PubMed  Google Scholar 

  2. Keel M, Trentz O (2005) Pathophysiology of polytrauma. Injury 36(6):691–709

    Article  PubMed  Google Scholar 

  3. Manley G, Knudson MM, Morabito D et al (2001) Hypotension, hypoxia, and head injury: frequency, duration, and consequences. Arch Surg 136(10):1118–1123

    Article  CAS  PubMed  Google Scholar 

  4. Williams AJ, Hartings JA, Lu XC et al (2005) Characterization of a new rat model of penetrating ballistic brain injury. J Neurotrauma 22(2):313–331

    Article  PubMed  Google Scholar 

  5. Williams AJ, Ling GS, Tortella FC (2006) Severity level and injury track determine outcome following a penetrating ballistic-like brain injury in the rat. Neurosci Lett 408(3):183–188

    Article  CAS  PubMed  Google Scholar 

  6. Navarro JC, Pillai S, Cherian L et al (2012) Histopathological and behavioral effects of immediate and delayed hemorrhagic shock after mild traumatic brain injury in rats. J Neurotrauma 29(2):322–334

    Article  PubMed  Google Scholar 

  7. Leung LY, Wei G, Shear DA et al (2013) Polytrauma and penetrating ballistic-like brain injury (PBBI): effects of multiple secondary insults and their sequence on acute physiology, neurological deficits and mortality. Int J Neurotrauma 15:A95–A95, Mary Ann Liebert, INC

    Google Scholar 

  8. Salomone JP, Pons PT (2007) PHTLS: prehospital trauma life support. Elsevier Mosby, St. Louis

    Google Scholar 

  9. Leung LY, Wei G, Shear DA et al (2013) The acute effects of hemorrhagic shock on cerebral blood flow, brain tissue oxygen tension, and spreading depolarization following penetrating ballistic-like brain injury. J Neurotrauma 30(14):1288–1298

    Article  PubMed  Google Scholar 

  10. Chen M, Clark RS, Kochanek PM et al (1998) 72-kDa heat shock protein and mRNA expression after controlled cortical impact injury with hypoxemia in rats. J Neurotrauma 15(3):171–181

    Article  CAS  PubMed  Google Scholar 

  11. Clark RS, Chen J, Watkins SC et al (1997) Apoptosis-suppressor gene bcl-2 expression after traumatic brain injury in rats. J Neurosci 17(23):9172–9182

    CAS  PubMed  Google Scholar 

  12. Clark RSB, Chen M, Kochanek PM et al (2001) Detection of single- and double-strand DNA breaks after traumatic brain injury in rats: comparison of in situ labeling techniques using DNA polymerase I, the Klenow fragment of DNA polymerase I, and terminal deoxynucleotidyl transferase. J Neurotrauma 18(7):675–689

    Article  PubMed  Google Scholar 

  13. Bramlett HM, Dietrich WD, Green EJ (1999) Secondary hypoxia following moderate fluid percussion brain injury in rats exacerbates sensorimotor and cognitive deficits. J Neurotrauma 16(11):1035–1047

    Article  CAS  PubMed  Google Scholar 

  14. Bramlett HM, Green EJ, Dietrich WD (1999) Exacerbation of cortical and hippocampal CA1 damage due to posttraumatic hypoxia following moderate fluid-percussion brain injury in rats. J Neurosurg 91(4):653–659

    Article  CAS  PubMed  Google Scholar 

  15. Matsushita Y, Shima K, Nawashiro H et al (2000) Real time monitoring of glutamate following fluid percussion brain injury with hypoxia in the rat. Acta Neurochir Suppl 76:207–212

    CAS  PubMed  Google Scholar 

  16. Taya K, Marmarou CR, Okuno K et al (2010) Effect of secondary insults upon aquaporin-4 water channels following experimental cortical contusion in rats. J Neurotrauma 27(1):229–239

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yuan XQ, Wade CE (1992) Traumatic brain injury attenuates the effectiveness of lactated Ringer's solution resuscitation of hemorrhagic shock in rats. Surg Gynecol Obstet 174(4):305–312

    CAS  PubMed  Google Scholar 

  18. Matsushita Y, Bramlett HM, Kuluz JW et al (2001) Delayed hemorrhagic hypotension exacerbates the hemodynamic and histopathologic consequences of traumatic brain injury in rats. J Cereb Blood Flow Metab 21(7):847–856

    Article  CAS  PubMed  Google Scholar 

  19. Hellmich HL, Garcia JM, Shimamura M et al (2005) Traumatic brain injury and hemorrhagic hypotension suppress neuroprotective gene expression in injured hippocampal neurons. Anesthesiology 102(4):806–814

    Article  PubMed  Google Scholar 

  20. Schutz C, Stover JF, Thompson HJ et al (2006) Acute, transient hemorrhagic hypotension does not aggravate structural damage or neurologic motor deficits but delays the long-term cognitive recovery following mild to moderate traumatic brain injury. Crit Care Med 34(2):492–501

    Article  PubMed  PubMed Central  Google Scholar 

  21. McMahon CG, Kenny R, Bennett K et al (2008) Modification of acute cardiovascular homeostatic responses to hemorrhage following mild to moderate traumatic brain injury. Crit Care Med 36(1):216–224

    Article  PubMed  Google Scholar 

  22. Robertson CS, Cherian L, Shah M et al (2012) Neuroprotection with an erythropoietin mimetic peptide (pHBSP) in a model of mild traumatic brain injury complicated by hemorrhagic shock. J Neurotrauma 29(6):1156–1166

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hawkins BE, Cowart JC, Parsley MA et al (2013) Effects of trauma, hemorrhage and resuscitation in aged rats. Brain Res 1496:28–35

    Article  CAS  PubMed  Google Scholar 

  24. Maegele M, Riess P, Sauerland S et al (2005) Characterization of a new rat model of experimental combined neurotrauma. Shock 23(5):476–481

    Article  PubMed  Google Scholar 

  25. Yamamoto M, Marmarou CR, Stiefel MF et al (1999) Neuroprotective effect of hypothermia on neuronal injury in diffuse traumatic brain injury coupled with hypoxia and hypotension. J Neurotrauma 16(6):487–500

    Article  CAS  PubMed  Google Scholar 

  26. Lammie GA, Piper IR, Thomson D et al (1999) Neuropathologic characterization of a rodent model of closed head injury--addition of clinically relevant secondary insults does not significantly potentiate brain damage. J Neurotrauma 16(7):603–615

    Article  CAS  PubMed  Google Scholar 

  27. Geeraerts T, Friggeri A, Mazoit JX et al (2008) Posttraumatic brain vulnerability to hypoxia-hypotension: the importance of the delay between brain trauma and secondary insult. Intensive Care Med 34(3):551–560

    Article  PubMed  Google Scholar 

  28. Salci K, Enblad P, Goiny M et al (2010) Metabolic effects of a late hypotensive insult combined with reduced intracranial compliance following traumatic brain injury in the rat. Ups J Med Sci 115(4):221–231

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Disclaimers

The views of the authors do not purport or reflect the position of the Department of the Army or the Department of Defense (para 4-3, AR 360-5). The authors declare that there are no conflicts of interest in this protocol. This research is funded by Combat Casualty Care Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai Yee Leung Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Leung, L.Y., Deng-Bryant, Y., Shear, D., Tortella, F. (2016). Experimental Models Combining TBI, Hemorrhagic Shock, and Hypoxemia. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics