Skip to main content

Repetitive Transcranial Magnetic Stimulation as a Novel Therapy in Animal Models of Traumatic Brain Injury

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

Traumatic brain injury (TBI) in humans causes a broad range of structural damage and functional deficits due to both primary and secondary injury mechanisms. Over the past three decades, animal models have been established to replicate the diverse changes of human TBI, to study the underlying pathophysiology and to develop new therapeutic strategies. However, drugs that were identified as neuroprotective in animal brain injury models were not successful in clinical trials phase II or phase III. Repetitive transcranial magnetic stimulation (rTMS) is a powerful noninvasive approach to excite cortical neurons in humans and animals, widely applied for therapeutic purpose in patients with brain diseases. In addition, recent animal studies showed rTMS as a strong neuroprotective tool. In this chapter, we discuss the rationale and mechanisms related to rTMS as well as therapeutic applications and putative molecular mechanisms. Furthermore, relevant biochemical studies and neuroprotective effect in animal models and possible application of rTMS as a novel treatment for rodent brain injury models are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Post A, Keck ME (2001) Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms? J Psychiatr Res 35:193–215

    Article  CAS  PubMed  Google Scholar 

  2. Thielscher A, Kammer T (2004) Electric field properties of two commercial figure-8 coils in TMS: calculation of focality and efficiency. Clin Neurophysiol 115:1697–1708

    Article  PubMed  Google Scholar 

  3. Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147–150

    Article  CAS  PubMed  Google Scholar 

  4. Kammer T, Beck S, Thielscher A, Laubis-Hermann U, Topka H (2001) Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin Neurophysiol 112:250–258

    Article  CAS  PubMed  Google Scholar 

  5. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  CAS  PubMed  Google Scholar 

  6. Rossi S, Hallett M, Rossini PM, Pacual-Leone A, Safety of TMS Consensus Group (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arias-Carriόn O (2008) Basic mechanisms of rTMS: Implications in Parkinson’s disease. Int Arch Med 1:2. doi:10.1186/1755-7682-1-2

    Article  Google Scholar 

  8. Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2:145–156

    Article  PubMed  Google Scholar 

  9. Edwards MJ, Talelli P, Rothwell JC (2008) Clinical applications of transcranial magnetic stimulation in patients with movement disorders. Lancet Neurol 7:827–840

    Article  PubMed  Google Scholar 

  10. Wang HY, Crupi D, Liu J et al (2011) Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte. J Neurosci 31:11044–11054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuwabara S, Cappelen-Smith C, Lin CS, Mogyoros I, Burke D (2002) Effects of voluntary activity on the excitability of motor axons in the peroneal nerve. Muscle Nerve 25:176–184

    Article  PubMed  Google Scholar 

  12. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129:1659–1673

    Article  CAS  PubMed  Google Scholar 

  13. Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Müller MB, Toschi N, Kreese AE, Post A, Keck ME (2000) Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology 23:205–215

    Article  PubMed  Google Scholar 

  15. Zhang X, Mei Y, Liu C et al (2007) Effect of transcranial magnetic stimulation on the expression of c-Fos and brain-derived neurotrophic factor of the cerebral cortex in rats with cerebral infarct. J Huazhong Univ Sci Technolog Med Sci 27:415–418

    Article  CAS  PubMed  Google Scholar 

  16. Gersner R, Kravetz E, Feil J et al (2011) Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity : differential outcomes in anesthetized and awake animals. J Neurosci 31:7521–7526

    Article  CAS  PubMed  Google Scholar 

  17. Ueyama E, Ukai S, Ogawa A et al (2011) Chronic repetitive transcranial magnetic stimulation increases hippocampal neurogenesis in rats. Psychiatry Clin Neurosci 65:77–81

    Article  PubMed  Google Scholar 

  18. Feng SF, Shi TY, Fan-Yang et al (2012) Long-lasting effects of chronic rTMS to treat chronic rodent model of depression. Behav Brain Res 232:245–251

    Article  PubMed  Google Scholar 

  19. Kole MH, Fuchs E, Ziemann U et al (1999) Changes in 5-HT1A and NMDA binding sites by a single rapid transcranial magnetic stimulation procedure in rats. Brain Res 826:309–312

    Article  CAS  PubMed  Google Scholar 

  20. Yue L, Xiao-Lin H, Tao S (2009) The effects of chronic repetitive transcranial magnetic stimulation on glutamate and gamma-aminobutyric acid in rat brain. Brain Res 1260:94–99

    Article  CAS  PubMed  Google Scholar 

  21. Erhardt A, Silaber I, Welt T et al (2004) Repetitive transcranial magnetic stimulation increases the release of dopamine in the nucleus accumbens shell of morphine-sensitized rats during abstinence. Neuropsychopharmacology 29:2074–2080

    Article  CAS  PubMed  Google Scholar 

  22. Tan T, Xie J, Tong Z et al (2013) Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons. Brain Res 1520:23–35

    Article  CAS  PubMed  Google Scholar 

  23. Gao F, Wang S, Guo Y et al (2010) Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study. Eur J Nucl Med Mol Imaging 37:954–961

    Article  PubMed  Google Scholar 

  24. Yoon KJ, Lee YT, Han TR (2011) Mechanism of functional recovery after repetitive transcranial magnetic stimulation (rTMS) in the subacute cerebral ischemic rat model: neural plasticity or anti-apoptosis? Exp Brain Res 214:549–556

    Article  PubMed  Google Scholar 

  25. Fujiki M, Kobayashi H, Abe T et al (2003) Repetitive transcranial magnetic stimulation for protection against delayed neuronal death induced by transient ischemia. J Neurosurg 99:1063–1069

    Article  PubMed  Google Scholar 

  26. Wang F, Geng X, Tao HY et al (2010) The restoration after repetitive transcranial magnetic stimulation treatment on cognitive ability of vasculardementia rats and its impacts on synaptic plasticity in hippocampal CA1 area. J Mol Neurosci 41:145–155

    Article  CAS  PubMed  Google Scholar 

  27. Okada K, Matsunaga K, Yuhi T et al (2002) The long-term high-frequency repetitive transcranial magnetic stimulation does not induce mRNA expression of inflammatory mediators in the rat central nervous system. Brain Res 957:37–41

    Article  CAS  PubMed  Google Scholar 

  28. Kim JY, Choi GS, Cho YW et al (2013) Attenuation of spinal cord injury-induced astroglial and microglial activation by repetitive transcranial magnetic stimulation in rats. J Korean Med Sci 28:295–299

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pape TL, Rosenow J, Lewis G (2006) Transcranial magnetic stimulation: a possible treatment for TBI. J Head Trauma Rehabil 21:437–451

    Article  PubMed  Google Scholar 

  30. Flanagan SR, Cantor JB, Ashman TA (2008) Traumatic brain injury: future assessment tools and treatment prospects. Neuropsychiatr Dis Treat 4:877–892

    Article  PubMed  PubMed Central  Google Scholar 

  31. Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Bernabeu M et al (2012) Noninvasive brain stimulation in traumatic brain injury. J Head Trauma Rehabil 27:274–292

    Article  PubMed  PubMed Central  Google Scholar 

  32. Villamar MF, Santos Portilla A, Fregni F et al (2012) Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury. Neuromodulation 15:326–338

    Article  PubMed  Google Scholar 

  33. Esser SK, Huber R, Massimini M et al (2006) A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Res Bull 69:86–94

    Article  CAS  PubMed  Google Scholar 

  34. Keck ME, Engelmann M, Müller MB et al (2000) Repetitive transcranial magnetic stimulation induces active coping strategies and attenuates the neuroendocrine stress response in rats. J Psychiatr Res 34:265–276

    Article  CAS  PubMed  Google Scholar 

  35. Ikeda T, Kurosawa M, Morimito C et al (2013) Multiple effects of repetitive transcranial magnetic stimulation on neuropsychiatric disorders. Biochem Biophys Res Commun 436:121–127

    Article  CAS  PubMed  Google Scholar 

  36. Hausmann A, Weis C, Marksteiner J et al (2000) Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus. Brain Res Mol Brain Res 76:355–362

    Article  CAS  PubMed  Google Scholar 

  37. Aydin-Abidin S, Trippe J, Funke K et al (2008) High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in rat brain. Exp Brain Res 188:249–261

    Article  CAS  PubMed  Google Scholar 

  38. Baek K, Chae JH, Jeong J (2012) The effect of repetitive transcranial magnetic stimulation on fear extinction in rats. Neuroscience 200:159–165

    Article  CAS  PubMed  Google Scholar 

Download references

Disclaimer

The authors declare that there are no conflicts of interest in this protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Quartarone M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rajan, T.S., Cuzzocrea, S., Bruschetta, D., Quartarone, A. (2016). Repetitive Transcranial Magnetic Stimulation as a Novel Therapy in Animal Models of Traumatic Brain Injury. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics