Skip to main content

Combined Neurotrauma Models: Experimental Models Combining Traumatic Brain Injury and Secondary Insults

  • Protocol
  • First Online:
Injury Models of the Central Nervous System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

Patients with severe traumatic brain injury (TBI) frequently present with concomitant injuries that may cause secondary brain injury and impact outcomes. Animal models have been developed that combine contemporary models of TBI with a secondary neurologic insult such as hypoxia, shock, long bone fracture, and radiation exposure. Combined injury models may be particularly useful when modeling treatment strategies and in efforts to map basic research to a heterogeneous patient population. Here, we review these models and their collective contribution to the literature on TBI. In addition, we provide protocols and notes for two well-characterized models of TBI plus hemorrhagic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, Jane JA, Marmarou A, Foulkes MA (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34:216–222

    Article  CAS  PubMed  Google Scholar 

  2. Pigula FA, Wald SL, Shackford SR, Vane DW (1993) The effect of hypotension and hypoxia on children with severe head injuries. J Pediatr Surg 28:310–314, discussion 315–316

    Article  CAS  PubMed  Google Scholar 

  3. Stewart TC, Alharfi IM, Fraser DD (2013) The role of serious concomitant injuries in the treatment and outcome of pediatric severe traumatic brain injury. J Trauma Acute Care Surg 75:836–842

    Article  PubMed  Google Scholar 

  4. Dennis AM, Haselkorn ML, Vagni VA, Garman RH, Janesko-Feldman K, Bayir H, Clark RS, Jenkins LW, Dixon CE, Kochanek PM (2009) Hemorrhagic shock after experimental traumatic brain injury in mice: effect on neuronal death. J Neurotrauma 26:889–899

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hemerka JN, Wu X, Dixon CE, Garman RH, Exo JL, Shellington DK, Blasiole B, Vagni VA, Janesko-Feldman K, Xu M, Wisniewski SR, Bayir H, Jenkins LW, Clark RS, Tisherman SA, Kochanek PM (2012) Severe brief pressure-controlled hemorrhagic shock after traumatic brain injury exacerbates functional deficits and long-term neuropathological damage in mice. J Neurotrauma 29:2192–2208

    Article  PubMed  PubMed Central  Google Scholar 

  6. Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT (2008) Classification of traumatic brain injury for targeted therapies. J Neurotrauma (Chicago, Ill: 1960) 25:719–738

    Google Scholar 

  7. Ramaiah VK, Sharma D, Ma L, Prathep S, Hoffman NG, Vavilala MS (2013) Admission oxygenation and ventilation parameters associated with discharge survival in severe pediatric traumatic brain injury. Child’s Nerv Syst 29:629–634

    Article  Google Scholar 

  8. Aji AA, Zwane E, Thompson C, Fieggen AG, Argent AC, Le Roux PD, Peter JC (2009) Brain tissue oxygen tension monitoring in pediatric severe traumatic brain injury. Part 1: relationship with outcome. Child’s Nerv Syst 25:1325–1333

    Article  Google Scholar 

  9. Ishige N, Pitts LH, Berry I, Carlson SG, Nishimura MC, Moseley ME, Weinstein PR (1987) The effect of hypoxia on traumatic head injury in rats: alterations in neurologic function, brain edema, and cerebral blood flow. J Cereb Blood Flow Metab 7:759–767

    Article  CAS  PubMed  Google Scholar 

  10. Ishige N, Pitts LH, Pogliani L, Hashimoto T, Nishimura MC, Bartkowski HM, James TL (1987) Effect of hypoxia on traumatic brain injury in rats: part 2. Changes in high energy phosphate metabolism. Neurosurgery 20:854–858

    Article  CAS  PubMed  Google Scholar 

  11. Ishige N, Pitts LH, Hashimoto T, Nishimura MC, Bartkowski HM (1987) Effect of hypoxia on traumatic brain injury in rats: part 1. Changes in neurological function, electroencephalograms, and histopathology. Neurosurgery 20:848–853

    Article  CAS  PubMed  Google Scholar 

  12. Clark RS, Kochanek PM, Dixon CE, Chen M, Marion DW, Heineman S, DeKosky ST, Graham SH (1997) Early neuropathologic effects of mild or moderate hypoxemia after controlled cortical impact injury in rats. J Neurotrauma 14:179–189

    Article  CAS  PubMed  Google Scholar 

  13. Jenkins LW, Moszynski K, Lyeth BG, Lewelt W, DeWitt DS, Allen A, Dixon CE, Povlishock JT, Majewski TJ, Clifton GL et al (1989) Increased vulnerability of the mildly traumatized rat brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury. Brain Res 477:211–224

    Article  CAS  PubMed  Google Scholar 

  14. Bramlett HM, Green EJ, Dietrich WD (1999) Exacerbation of cortical and hippocampal CA1 damage due to posttraumatic hypoxia following moderate fluid-percussion brain injury in rats. J Neurosurg 91:653–659

    Article  CAS  PubMed  Google Scholar 

  15. Mikrogianakis A, Shaye RE, Griffin P, Kawesa S, Lockwood J, Gendron NH, Gaboury I, Merali Z, Mackenzie AE, Hutchison JS (2007) Hypoxia alters the expression of inhibitor of apoptosis proteins after brain trauma in the mouse. J Neurotrauma 24:338–353

    Article  PubMed  Google Scholar 

  16. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: pathophysiology And Biomechanics. J Neurosurg 80:291–300

    Article  CAS  PubMed  Google Scholar 

  17. Hellewell SC, Yan EB, Agyapomaa DA, Bye N, Morganti-Kossmann MC (2010) Post-traumatic hypoxia exacerbates brain tissue damage: analysis of axonal injury and glial responses. J Neurotrauma 27:1997–2010

    Article  PubMed  Google Scholar 

  18. Yan EB, Hellewell SC, Bellander BM, Agyapomaa DA, Morganti-Kossmann MC (2011) Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflammation 8:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goodman MD, Makley AT, Huber NL, Clarke CN, Friend LA, Schuster RM, Bailey SR, Barnes SL, Dorlac WC, Johannigman JA, Lentsch AB, Pritts TA (2011) Hypobaric hypoxia exacerbates the neuroinflammatory response to traumatic brain injury. J Surg Res 165:30–37

    Article  CAS  PubMed  Google Scholar 

  20. Matsushita Y, Bramlett HM, Alonso O, Dietrich WD (2001) Posttraumatic hypothermia is neuroprotective in a model of traumatic brain injury complicated by a secondary hypoxic insult. Crit Care Med 29:2060–2066

    Article  CAS  PubMed  Google Scholar 

  21. Abayomi OK (1996) Pathogenesis of irradiation-induced cognitive dysfunction. Acta Oncol (Stockholm, Sweden) 35:659–663

    Article  CAS  Google Scholar 

  22. Allen AR, Eilertson K, Chakraborti A, Sharma S, Baure J, Habdank-Kolaczkowski J, Allen B, Rosi S, Raber J, Fike JR (2014) Radiation exposure prior to traumatic brain injury induces responses that differ as a function of animal age. Int J Radiat Biol 90:214–223

    Article  CAS  PubMed  Google Scholar 

  23. Allen AR, Eilertson K, Sharma S, Schneider D, Baure J, Allen B, Rosi S, Raber J, Fike JR (2013) Effects of radiation combined injury on hippocampal function are modulated in mice deficient in chemokine receptor 2 (CCR2). Radiat Res 180:78–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hwabejire JO, Imam AM, Jin G, Liu B, Li Y, Sillesen M, Jepsen CH, Lu J, deMoya MA, Alam HB (2013) Differential effects of fresh frozen plasma and normal saline on secondary brain damage in a large animal model of polytrauma, hemorrhage and traumatic brain injury. J Trauma Acute Care Surg 75:968–974, discussion 974–965

    Article  PubMed  Google Scholar 

  25. Probst C, Mirzayan MJ, Mommsen P, Zeckey C, Tegeder T, Geerken L, Maegele M, Samii A, van Griensven M (2012) Systemic inflammatory effects of traumatic brain injury, femur fracture, and shock: an experimental murine polytrauma model. Mediators Inflamm 2012:136020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mirzayan MJ, Probst C, Samii M, Krettek C, Gharabaghi A, Pape HC, van Griensven M, Samii A (2012) Histopathological features of the brain, liver, kidney and spleen following an innovative polytrauma model of the mouse. Exp Toxicol Pathol 64:133–139

    Article  CAS  PubMed  Google Scholar 

  27. Yuan XQ, Wade CE, Clifford CB (1991) Suppression by traumatic brain injury of spontaneous hemodynamic recovery from hemorrhagic shock in rats. J Neurosurg 75:408–414

    Article  CAS  PubMed  Google Scholar 

  28. Mahoney EJ, Biffl WL, Harrington DT, Cioffi WG (2003) Isolated brain injury as a cause of hypotension in the blunt trauma patient. J Trauma 55:1065–1069

    Article  PubMed  Google Scholar 

  29. Nelson TJ, Wall DB, Stedje-Larsen ET, Clark RT, Chambers LW, Bohman HR (2006) Predictors of mortality in close proximity blast injuries during Operation Iraqi Freedom. J Am Coll Surg 202:418–422

    Article  PubMed  Google Scholar 

  30. Gilles EE, Nelson MD Jr (1998) Cerebral complications of nonaccidental head injury in childhood. Pediatr Neurol 19:119–128

    Article  CAS  PubMed  Google Scholar 

  31. Stern SA, Zink BJ, Mertz M, Wang X, Dronen SC (2000) Effect of initially limited resuscitation in a combined model of fluid-percussion brain injury and severe uncontrolled hemorrhagic shock. J Neurosurg 93:305–314

    Article  CAS  PubMed  Google Scholar 

  32. White NJ, Wang X, Bradbury N, Moon-Massat PF, Freilich D, Auker C, McCarron R, Scultetus A, Stern SA (2013) Fluid resuscitation of uncontrolled hemorrhage using a hemoglobin-based oxygen carrier: effect of traumatic brain injury. Shock (Augusta, Ga) 39:210–219

    CAS  Google Scholar 

  33. Hariri RJ, Firlick AD, Shepard SR, Cohen DS, Barie PS, Emery JM III, Ghajar JB (1993) Traumatic brain injury, hemorrhagic shock, and fluid resuscitation: effects on intracranial pressure and brain compliance. J Neurosurg 79:421–427

    Article  CAS  PubMed  Google Scholar 

  34. Matsushita Y, Bramlett HM, Kuluz JW, Alonso O, Dietrich WD (2001) Delayed hemorrhagic hypotension exacerbates the hemodynamic and histopathologic consequences of traumatic brain injury in rats. J Cereb Blood Flow Metab 21:847–856

    Article  CAS  PubMed  Google Scholar 

  35. Schutz C, Stover JF, Thompson HJ, Hoover RC, Morales DM, Schouten JW, McMillan A, Soltesz K, Motta M, Spangler Z, Neugebauer E, McIntosh TK (2006) Acute, transient hemorrhagic hypotension does not aggravate structural damage or neurologic motor deficits but delays the long-term cognitive recovery following mild to moderate traumatic brain injury. Crit Care Med 34:492–501

    Article  PubMed  PubMed Central  Google Scholar 

  36. Leung LY, Wei G, Shear DA, Tortella FC (2013) The acute effects of hemorrhagic shock on cerebral blood flow, brain tissue oxygen tension, and spreading depolarization following penetrating ballistic-like brain injury. J Neurotrauma 30:1288–1298

    Article  PubMed  Google Scholar 

  37. Shellington DK, Du L, Wu X, Exo J, Vagni V, Ma L, Janesko-Feldman K, Clark RS, Bayir H, Dixon CE, Jenkins LW, Hsia CJ, Kochanek PM (2011) Polynitroxylated pegylated hemoglobin: a novel neuroprotective hemoglobin for acute volume-limited fluid resuscitation after combined traumatic brain injury and hemorrhagic hypotension in mice. Crit Care Med 39:494–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brockman EC, Bayir H, Blasiole B, Shein SL, Fink EL, Dixon C, Clark RS, Vagni VA, Ma L, Hsia CJ, Tisherman SA, Kochanek PM (2013) Polynitroxylated-pegylated hemoglobin attenuates fluid requirements and brain edema in combined traumatic brain injury plus hemorrhagic shock in mice. J Cereb Blood Flow Metab 33:1457–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Exo JL, Shellington DK, Bayir H, Vagni VA, Janesco-Feldman K, Ma L, Hsia CJ, Clark RS, Jenkins LW, Dixon CE, Kochanek PM (2009) Resuscitation of traumatic brain injury and hemorrhagic shock with polynitroxylated albumin, hextend, hypertonic saline, and lactated Ringer’s: effects on acute hemodynamics, survival, and neuronal death in mice. J Neurotrauma 26:2403–2408

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blasiole B, Bayr H, Vagni VA, Janesko-Feldman K, Cheikhi A, Wisniewski SR, Long JB, Atkins J, Kagan V, Kochanek PM (2013) Effect of hyperoxia on resuscitation of experimental combined traumatic brain injury and hemorrhagic shock in mice. Anesthesiology 118:649–663

    Article  CAS  PubMed  Google Scholar 

  41. Shein S, Shellington DK, Exo J, Jackson TC, Wisniewski SR, Jackson E, Vagni VA, Bayir H, Clark R, Dixon CE, Janesko KL, Kochanek PM (2014) Hemorrhagic shock shifts the serum cytokine profile from pro-to anti-inflammatory after experimental traumatic brain injury in mice. J Neurotrauma 31:1386–1395

    Article  PubMed  PubMed Central  Google Scholar 

  42. Foley LM, Iqbal O’Meara AM, Wisniewski SR, Hitchens TK, Melick JA, Ho C, Jenkins LW, Kochanek PM (2013) MRI assessment of cerebral blood flow after experimental traumatic brain injury combined with hemorrhagic shock in mice. J Cereb Blood Flow Metab 33:129–136

    Article  PubMed  Google Scholar 

  43. Glass TF, Fabian MJ, Schweitzer JB, Weinberg JA, Proctor KG (2001) The impact of hypercarbia on the evolution of brain injury in a porcine model of traumatic brain injury and systemic hemorrhage. J Neurotrauma 18:57–71

    Article  CAS  PubMed  Google Scholar 

  44. Fritz HG, Walter B, Holzmayr M, Brodhun M, Patt S, Bauer R (2005) A pig model with secondary increase of intracranial pressure after severe traumatic brain injury and temporary blood loss. J Neurotrauma 22:807–821

    Article  PubMed  Google Scholar 

  45. Jin G, DeMoya MA, Duggan M, Knightly T, Mejaddam AY, Hwabejire J, Lu J, Smith WM, Kasotakis G, Velmahos GC, Socrate S, Alam HB (2012) Traumatic brain injury and hemorrhagic shock: evaluation of different resuscitation strategies in a large animal model of combined insults. Shock (Augusta, Ga) 38:49–56

    Article  Google Scholar 

  46. Myburgh J, Cooper DJ, Finfer S, Bellomo R, Norton R, Bishop N, Kai Lo S, Vallance S (2007) Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med 357:874–884

    Article  CAS  PubMed  Google Scholar 

  47. Kochanek PM, Vagni VA, Janesko KL, Washington CB, Crumrine PK, Garman RH, Jenkins LW, Clark RS, Homanics GE, Dixon CE, Schnermann J, Jackson EK (2006) Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab 26:565–575

    Article  CAS  PubMed  Google Scholar 

  48. Foley LM, Hitchens TK, Ho C, Janesko-Feldman KL, Melick JA, Bayir H, Kochanek PM (2009) Magnetic resonance imaging assessment of macrophage accumulation in mouse brain after experimental traumatic brain injury. J Neurotrauma 26:1509–1519

    Article  PubMed  PubMed Central  Google Scholar 

  49. Carrillo P, Takasu A, Safar P, Tisherman S, Stezoski SW, Stolz G, Dixon CE, Radovsky A (1998) Prolonged severe hemorrhagic shock and resuscitation in rats does not cause subtle brain damage. J Trauma 45:239–248, discussion 248–249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

NICHD T32 HD40686; U.S. Army grants W81XWH-10-1-0623 and WH81XWH-14-2-0018; NIH grant NS087978.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. B. Clark M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Simon, D.W., Vagni, V.M., Kochanek, P.M., Clark, R.S.B. (2016). Combined Neurotrauma Models: Experimental Models Combining Traumatic Brain Injury and Secondary Insults. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics