Skip to main content

Monitoring Intracellular pH Change with a Genetically Encoded and Ratiometric Luminescence Sensor in Yeast and Mammalian Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1461))

Abstract

“pHlash” is a novel bioluminescence-based pH sensor for measuring intracellular pH, which is developed based on Bioluminescence Resonance Energy Transfer (BRET). pHlash is a fusion protein between a mutant of Renilla luciferase (RLuc) and a Venus fluorophore. The spectral emission of purified pHlash protein exhibits pH dependence in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification. In this chapter, we describe an in vitro characterization of pHlash, and also in vivo assays including in yeast cells and in HeLa cells using pHlash as a cytoplasmic pH indicator.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    CAS  PubMed  Google Scholar 

  2. Fricker MD, Plieth C, Knight H, Blancaflor E, Knight MR, White NS, Gilroy S (1999) Fluorescence and luminescence techniques to probe ion activities in living plant cells. In: Mayson WT (ed) Fluorescent and Luminescent Probes for Biological Activity. Academic Press, San Diego, pp 569–596

    Chapter  Google Scholar 

  3. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  CAS  PubMed  Google Scholar 

  4. Kneen M, Farinas J, Li Y, Verkman AS (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schulte A, Lorenzen I, Böttcher M, Plieth C (2006) A novel fluorescent pH probe for expression in plants. Plant Methods 2:1–13

    Article  Google Scholar 

  6. Ugarova NN, Maloshenok LG, Uporov IV, Koksharov MI (2005) Bioluminescence spectra of native and mutant firefly luciferases as a function of pH. Biochemistry (Moscow) 70:1534–1540

    Article  Google Scholar 

  7. Matthews JC, Hori K, Cormier MJ (1977) Purification and properties of Renilla reniformis luciferase. Biochemistry 16:85–91

    Article  CAS  PubMed  Google Scholar 

  8. Verhaegen M, Christopoulos TK (2002) Recombinant Gaussia luciferase. Overexpression, purification and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 74:4378–4385

    Article  CAS  Google Scholar 

  9. Branchini BR, Ablamsky DM, Rosenberg JC (2010) Chemically modified firefly luciferase is an efficient source of near-infrared light. Bioconjugate Chem 21:2023–2030

    Article  CAS  Google Scholar 

  10. Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, Otto P, Zimmerman K, Vidugiris G, Machleidt T, Robers MB, Benink HA, Eggers CT, Slater MR, Meisenheimer PL, Klaubert DH, Fan F, Encell LP, Wood KV (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Loening AM, Fenn TD, Wu AM, Gambhir SS (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19:391–400

    Article  CAS  PubMed  Google Scholar 

  12. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101:10554–10559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu Y, Piston D, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96:151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Xie Q, Roberson JB, Johnson CH (2012) pHlash: A new genetically encoded and ratiometric luminescence sensor of intracellular pH. PLoS One 7, e43072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brett CL, Tukaye DN, Mukherjee S, Rao R (2005) The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16:1396–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu X, Soutto M, Xie Q, Servick S, Subramanian C et al (2007) Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proc Natl Acad Sci U S A 104:10264–10269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krishnamoorthy A, Robertson JB (2015) Dual color monitoring overcomes limitations of single bioluminescent reporters in fast growing microbes and reveals phase-dependent protein productivity during metabolic rhythms of yeast. Appl Environ Microbiol 81:6484–6495

    Google Scholar 

  18. Xie Q, Soutto M, Xu X, Zhang Y, Johnson CH (2011) Bioluminescence resonance energy transfer (BRET) imaging in plant seedlings and mammalian cells. Methods Mol Biol 680:3–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roberson JB, Zhang Y, Johnson CH (2009) Light-emitting diode flashlights as effective and inexpensive light sources for fluorescence microscopy. J Microsc 236:1–4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Hirschie Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, Y., Robertson, J.B., Xie, Q., Johnson, C.H. (2016). Monitoring Intracellular pH Change with a Genetically Encoded and Ratiometric Luminescence Sensor in Yeast and Mammalian Cells. In: Kim, S. (eds) Bioluminescence. Methods in Molecular Biology, vol 1461. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3813-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3813-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3811-7

  • Online ISBN: 978-1-4939-3813-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics