Skip to main content

Synergist Ablation as a Rodent Model to Study Satellite Cell Dynamics in Adult Skeletal Muscle

  • Protocol
  • First Online:
Book cover Skeletal Muscle Regeneration in the Mouse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1460))

Abstract

In adult skeletal muscles, satellite cells are the primary myogenic stem cells involved in myogenesis. Normally, they remain in a quiescent state until activated by a stimulus, after which they proliferate, differentiate, and fuse into an existing myofiber or form a de novo myofiber. To study satellite cell dynamics in adult murine models, most studies utilize regeneration models in which the muscle is severely damaged and requires the participation from satellite cells in order to repair. Here, we describe a model to study satellite cell behavior in muscle hypertrophy that is independent of muscle regeneration.

Synergist ablation surgery involves the surgical removal of the gastrocnemius and soleus muscles resulting in functional overload of the remaining plantaris muscle. This functional overload results in myofiber hypertrophy, as well as the activation, proliferation, and fusion of satellite cells into the myofibers. Within 2 weeks of functional overload, satellite cell content increases approximately 275 %, an increase that is accompanied with a ~60 % increase in the number of myonuclei. Therefore, this can be used as an alternative model to study satellite cell behavior in adulthood that is different from regeneration, and capable of revealing new satellite cell functions in regulating muscle adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  CAS  PubMed  Google Scholar 

  2. Fry CS, Lee JD, Jackson JR, Kirby TJ, Stasko SA, Liu H, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2014) Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J 28:1654–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138:3657–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Fry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kirby, T.J., McCarthy, J.J., Peterson, C.A., Fry, C.S. (2016). Synergist Ablation as a Rodent Model to Study Satellite Cell Dynamics in Adult Skeletal Muscle. In: Kyba, M. (eds) Skeletal Muscle Regeneration in the Mouse. Methods in Molecular Biology, vol 1460. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3810-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3810-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3808-7

  • Online ISBN: 978-1-4939-3810-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics