Skip to main content

Assessment of the Contractile Properties of Permeabilized Skeletal Muscle Fibers

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1460))

Abstract

Permeabilized individual skeletal muscle fibers offer the opportunity to evaluate contractile behavior in a system that is greatly simplified, yet physiologically relevant. Here we describe the steps required to prepare, permeabilize and preserve small samples of skeletal muscle. We then detail the procedures used to isolate individual fiber segments and attach them to an experimental apparatus for the purpose of controlling activation and measuring force generation. We also describe our technique for estimating the cross-sectional area of fiber segments. The area measurement is necessary for normalizing the absolute force to obtain specific force, a measure of the intrinsic force-generating capability of the contractile system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mendias CL, Kayupov E, Bradley JR, Brooks SV, Claflin DR (2011) Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation. J Appl Physiol 111:185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gumucio JP, Davis ME, Bradley JR, Stafford PL, Schiffman CJ, Lynch EB, Claflin DR, Bedi A, Mendias CL (2012) Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy. J Orthop Res 30:1963–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mendias CL, Roche SM, Harning JA, Davis ME, Lynch EB, Sibilsky Enselman ER, Jacobson JA, Claflin DR, Calve S, Bedi A (2015) Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears. J Shoulder Elbow Surg 24:111–119

    Article  PubMed  Google Scholar 

  4. Roche SM, Gumucio JP, Brooks SV, Mendias CL, Claflin DR (2015) Measurement of maximum isometric force generated by permeabilized skeletal muscle fibers. J Vis Exp 100:e52695

    PubMed  Google Scholar 

  5. Wood LK, Kayupov E, Gumucio JP, Mendias CL, Claflin DR, Brooks SV (2014) Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice. J Appl Physiol 117:363–369

    Article  PubMed  PubMed Central  Google Scholar 

  6. Claflin DR, Larkin LM, Cederna PS, Horowitz JF, Alexander NB, Cole NM, Galecki AT, Chen S, Nyquist LV, Carlson BM, Faulkner JA, Ashton-Miller JA (2011) Effects of high- and low-velocity resistance training on the contractile properties of skeletal muscle fibers from young and older humans. J Appl Physiol 111:1021–1030

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moisescu DG, Thieleczek R (1978) Calcium and strontium concentration changes within skinned muscle preparations following a change in the external bathing solution. J Physiol 275:241–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cleworth DR, Edman KA (1972) Changes in sarcomere length during isometric tension development in frog skeletal muscle. J Physiol 227:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kawai M, Kuntz ID (1973) Optical diffraction studies of muscle fibers. Biophys J 13:857–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moss RL (1982) The effect of calcium on the maximum velocity of shortening in skinned skeletal muscle fibres of the rabbit. J Muscle Res Cell Motil 3:295–311

    Article  CAS  PubMed  Google Scholar 

  12. Chase PB, Kushmerick MJ (1995) Effect of physiological ADP concentrations on contraction of single skinned fibers from rabbit fast and slow muscles. Am J Physiol 268:C480–C489

    CAS  PubMed  Google Scholar 

  13. Edman KA (2005) Contractile properties of mouse single muscle fibers, a comparison with amphibian muscle fibers. J Exp Biol 208:1905–1913

    Article  CAS  PubMed  Google Scholar 

  14. Phillips SK, Woledge RC (1992) A comparison of isometric force, maximum power and isometric heat rate as a function of sarcomere length in mouse skeletal muscle. Pflugers Arch 420:578–583

    Article  CAS  PubMed  Google Scholar 

  15. Stephenson DG, Williams DA (1982) Effects of sarcomere length on the force-pCa relation in fast- and slow-twitch skinned muscle fibres from the rat. J Physiol 333:637–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walker SM, Schrodt GR (1974) I segment lengths and thin filament periods in skeletal muscle fibers of the Rhesus monkey and the human. Anat Rec 178:63–81

    Article  CAS  PubMed  Google Scholar 

  17. Gollapudi SK, Lin DC (2009) Experimental determination of sarcomere force-length relationship in type-I human skeletal muscle fibers. J Biomech 42:2011–2016

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the following funding sources: R01-AG050676, R01-AR063649, F31-AR065931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan V. Brooks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Claflin, D.R., Roche, S.M., Gumucio, J.P., Mendias, C.L., Brooks, S.V. (2016). Assessment of the Contractile Properties of Permeabilized Skeletal Muscle Fibers. In: Kyba, M. (eds) Skeletal Muscle Regeneration in the Mouse. Methods in Molecular Biology, vol 1460. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3810-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3810-0_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3808-7

  • Online ISBN: 978-1-4939-3810-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics