Skip to main content

In Vitro Assays to Determine Skeletal Muscle Physiologic Function

  • Protocol
  • First Online:
Skeletal Muscle Regeneration in the Mouse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1460))

Abstract

In vitro muscle contractile function assays are important to characterize the differences between different muscle types (e.g., slow vs. fast), between a diseased and non-diseased muscle, or importantly, to demonstrate the efficacy of a muscle treatment such as a drug, an overexpressed transgene, or knockout of a specific gene. Fundamental contractile properties can be assessed by twitch, tetanic, force–frequency, force–velocity, and fatigue assays. Many of these assays are conducted with the muscle at a constant length, e.g., an isometric contraction. However, to better represent the dynamic purpose of muscles in vivo (e.g., to move limbs), dynamic assays such as the force–velocity (concentric contractions) or stretch-injury (eccentric contractions) should also be obtained. Characterizing skeletal muscle function in vitro is a powerful approach to demonstrate efficacy of a treatment to rescue diseased muscle and to assess functional regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Call JA, Lowe DA (2016) Eccentric contraction-induced muscle injury: reproducible, quantitative, physiological models to impair skeletal muscle’s capacity to generate force. In: Kyba M (ed) Skeletal muscle regeneration in the mouse. Springer, New York

    Google Scholar 

  2. Blaauw B, Schiaffino S, Reggiani C (2013) Mechanisms modulating skeletal muscle phenotype. Compr Physiol 3(4):1645–1687

    Article  PubMed  Google Scholar 

  3. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531

    Article  CAS  PubMed  Google Scholar 

  4. Glaser BW et al (2010) Relative proportions of hybrid fibres are unaffected by 6 weeks of running exercise in mouse skeletal muscles. Exp Physiol 95(1):211–221

    Article  PubMed  Google Scholar 

  5. Luedeke JD et al (2004) Properties of slow- and fast-twitch skeletal muscle from mice with an inherited capacity for hypoxic exercise. Comp Biochem Physiol A Mol Integr Physiol 138(3):373–382

    Article  PubMed  Google Scholar 

  6. Quiat D et al (2011) Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proc Natl Acad Sci U S A 108(25):10196–10201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lynch GS et al (2001) Force and power output of fast and slow skeletal muscles from mdx mice 6–28 months old. J Physiol 535(Pt 2):591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Childers MK et al (2014) Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 6(220):220ra10

    Article  PubMed  PubMed Central  Google Scholar 

  9. Filareto A et al (2015) Pax3-induced expansion enables the genetic correction of dystrophic satellite cells. Skelet Muscle 5:36

    Article  PubMed  PubMed Central  Google Scholar 

  10. McClung JM et al (2010) Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery. Exp Physiol 95(1):222–231

    Article  CAS  PubMed  Google Scholar 

  11. Russell KA et al (2015) Mouse forepaw lumbrical muscles are resistant to age-related declines in force production. Exp Gerontol 65:42–45

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mendez J, Keys A (1960) Density and composition of mammalian muscle. Metabolism 9:184–188

    CAS  Google Scholar 

  13. Brooks SV, Faulkner JA (1988) Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404:71–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Head SI, Arber MB (2013) An active learning mammalian skeletal muscle lab demonstrating contractile and kinetic properties of fast- and slow-twitch muscle. Adv Physiol Educ 37(4):405–414

    Article  CAS  PubMed  Google Scholar 

  15. Asmussen G, Gaunitz U (1989) Temperature effects on isometric contractions of slow and fast twitch muscles of various rodents—dependence on fibre type composition: a comparative study. Biomed Biochim Acta 48(5–6):S536–S541

    CAS  PubMed  Google Scholar 

  16. Graber TG et al (2015) C57BL/6 life span study: age-related declines in muscle power production and contractile velocity. Age (Dordr) 37(3):9773

    Article  Google Scholar 

  17. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332

    Article  CAS  PubMed  Google Scholar 

  18. Call JA et al (2008) Endurance capacity in maturing mdx mice is markedly enhanced by combined voluntary wheel running and green tea extract. J Appl Physiol (1985) 105(3):923–932

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Grange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sperringer, J.E., Grange, R.W. (2016). In Vitro Assays to Determine Skeletal Muscle Physiologic Function. In: Kyba, M. (eds) Skeletal Muscle Regeneration in the Mouse. Methods in Molecular Biology, vol 1460. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3810-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3810-0_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3808-7

  • Online ISBN: 978-1-4939-3810-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics