Skip to main content

Assaying Human Myogenic Progenitor Cell Activity by Reconstitution of Muscle Fibers and Satellite Cells in Immunodeficient Mice

  • Protocol
  • First Online:
Skeletal Muscle Regeneration in the Mouse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1460))

Abstract

Comparing the functional myogenic potential of various human cell populations is an important step in the preclinical evaluation of cell transplantation as a means to treat human muscle disease and degeneration. Culture systems allow one to gage the potential of cell populations to proliferate and undergo myogenic differentiation under specific conditions. An in vivo assay evaluates the ability of cells to differentiate and generate muscle fibers within a natural environment, and importantly, evaluates the potential of donor cells to reconstitute the satellite cell niche. In this chapter, we describe a technique for isolating mononuclear cells from human muscle samples, and a method of xenotransplantation for assessing functional myogenic potential in vivo. Briefly, cell populations are injected into the pre-irradiated and regenerating muscle of immunodeficient mice. The injected muscle is frozen at specific time points after injection and cryosections analyzed by immunostaining. The number of human dystrophin-expressing fibers and the number of Pax7+ human lamin A/C+ nuclei are determined, which provides a quantitative method of comparing the in vivo functional potential of cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bischoff R (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115(1):129–139

    Article  CAS  PubMed  Google Scholar 

  2. Sanes JR (2003) The basement membrane/basal lamina of skeletal muscle. J Biol Chem 278(15):12601–12604

    Article  CAS  PubMed  Google Scholar 

  3. Konigsberg IR, McElvain N, Tootle M, Herrmann H (1960) The dissociability of deoxyribonucleic acid synthesis from the development of multinuclearity of muscle cells in culture. J Biophys Biochem Cytol 8:333–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Konigsberg IR (1960) The differentiation of cross-striated myofibrils in short term cell culture. Exp Cell Res 21:414–420

    Article  CAS  PubMed  Google Scholar 

  5. Rinaldini LM (1959) An improved method for the isolation and quantitative cultivation of embryonic cells. Exp Cell Res 16(3):477–505

    Article  CAS  PubMed  Google Scholar 

  6. Konigsberg IR (1979) Skeletal myoblasts in culture. Methods Enzymol 58:511–527

    Article  CAS  PubMed  Google Scholar 

  7. Carlson BM (1968) Regeneration of the completely excised gastrocnemius muscle in the frog and rat from minced muscle fragments. J Morphol 125(4):447–472

    Article  CAS  PubMed  Google Scholar 

  8. Partridge TA, Sloper JC (1977) A host contribution to the regeneration of muscle grafts. J Neurol Sci 33(3):425–435

    Article  CAS  PubMed  Google Scholar 

  9. Partridge TA, Grounds M, Sloper JC (1978) Evidence of fusion between host and donor myoblasts in skeletal muscle grafts. Nature 273(5660):306–308

    Article  CAS  PubMed  Google Scholar 

  10. Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337(6203):176–179

    Article  CAS  PubMed  Google Scholar 

  11. Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267

    Article  CAS  PubMed  Google Scholar 

  12. Meng J, Adkin CF, Xu SW, Muntoni F, Morgan JE (2011) Contribution of human muscle-derived cells to skeletal muscle regeneration in dystrophic host mice. PLoS One 6(3):e17454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meng J, Chun S, Asfahani R, Lochmuller H, Muntoni F, Morgan J (2014) Human skeletal muscle-derived CD133(+) cells form functional satellite cells after intramuscular transplantation in immunodeficient host mice. Mol Ther 22(5):1008–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Negroni E, Riederer I, Chaouch S, Belicchi M, Razini P, Di SJ, Torrente Y, Butler-Browne GS, Mouly V (2009) In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther 17(10):1771–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parker MH, Loretz C, Tyler AE, Duddy WJ, Hall JK, Olwin BB, Bernstein ID, Storb R, Tapscott SJ (2012) Activation of notch signaling during ex vivo expansion maintains donor muscle cell engraftment. Stem Cells 30(10):2212–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parker MH, Loretz C, Tyler AE, Snider L, Storb R, Tapscott SJ (2012) Inhibition of CD26/DPP-IV enhances donor muscle cell engraftment and stimulates sustained donor cell proliferation. Skelet Muscle 2(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu CH, Mouly V, Cooper RN, Mamchaoui K, Bigot A, Shay JW, Di Santo JP, Butler-Browne GS, Wright WE (2007) Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 6(4):515–523

    Article  CAS  PubMed  Google Scholar 

  18. Morgan JE, Hoffman EP, Partridge TA (1990) Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse. J Cell Biol 111(6 Pt 1):2437–2449

    Article  CAS  PubMed  Google Scholar 

  19. Gross JG, Bou-Gharios G, Morgan JE (1999) Potentiation of myoblast transplantation by host muscle irradiation is dependent on the rate of radiation delivery. Cell Tissue Res 298(2):371–375

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maura H. Parker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Parker, M.H. (2016). Assaying Human Myogenic Progenitor Cell Activity by Reconstitution of Muscle Fibers and Satellite Cells in Immunodeficient Mice. In: Kyba, M. (eds) Skeletal Muscle Regeneration in the Mouse. Methods in Molecular Biology, vol 1460. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3810-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3810-0_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3808-7

  • Online ISBN: 978-1-4939-3810-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics