Skip to main content

Flow Cytometry and Transplantation-Based Quantitative Assays for Satellite Cell Self-Renewal and Differentiation

  • Protocol
  • First Online:
Book cover Skeletal Muscle Regeneration in the Mouse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1460))

Abstract

In response to muscle damage, satellite cells proliferate and undertake both differentiation and self-renewal, generating new functional muscle tissue and repopulating this new muscle with stem cells for future injury responses. For many questions relating to the physiological regulation of satellite cells, quantitative readouts of self-renewal and differentiation can be very useful. There is a particular need for a quantitative assay for satellite cell self-renewal that does not rely solely upon sectioning, staining and counting cells in sections. In this chapter, we provide detailed methods for quantifying the self-renewal and differentiation potential of a given population of satellite cells using an assay involving transplantation into injured, regenerating muscle together with specific markers for donor cell identity and state of differentiation. In particular, using the Pax7-ZsGreen transgene as a marker of satellite cell state, self-renewal can be quantified by FACS on transplanted muscle to actually count the total number of resident satellite cells at time points following transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montarras D et al (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(5743):2064–2067

    Article  CAS  PubMed  Google Scholar 

  2. Seale P et al (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786

    Article  CAS  PubMed  Google Scholar 

  3. Bosnakovski D et al (2008) Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells 26(12):3194–3204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928

    Article  CAS  PubMed  Google Scholar 

  5. Watkins SC, Hoffman EP, Slayter HS, Kunkel LM (1988) Immunoelectron microscopic localization of dystrophin in myofibres. Nature 333(6176):863–866

    Article  CAS  PubMed  Google Scholar 

  6. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 90(8):3710–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ervasti JM, Campbell KP (1991) Membrane organization of the dystrophin-glycoprotein complex. Cell 66(6):1121–1131

    Article  CAS  PubMed  Google Scholar 

  8. Sicinski P et al (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244(4912):1578–1580

    Article  CAS  PubMed  Google Scholar 

  9. Arpke RW et al (2013) A new immuno- dystrophin-deficient model, the NSG-Mdx mouse, provides evidence for functional improvement following allogeneic satellite cell transplantation. Stem Cells 31:1611–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301(5900):527–530

    Article  CAS  PubMed  Google Scholar 

  11. Cao X et al (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2(3):223–238

    Article  CAS  PubMed  Google Scholar 

  12. Chapman VM, Miller DR, Armstrong D, Caskey CT (1989) Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. Proc Natl Acad Sci U S A 86(4):1292–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Danko I, Chapman V, Wolff JA (1992) The frequency of revertants in mdx mouse genetic models for Duchenne muscular dystrophy. Pediatr Res 32(1):128–131

    Article  CAS  PubMed  Google Scholar 

  14. Hoffman EP, Morgan JE, Watkins SC, Partridge TA (1990) Somatic reversion/suppression of the mouse mdx phenotype in vivo. J Neurol Sci 99(1):9–25

    Article  CAS  PubMed  Google Scholar 

  15. Chan SS et al (2013) Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell 12(5):587–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blanco-Bose WE, Yao CC, Kramer RH, Blau HM (2001) Purification of mouse primary myoblasts based on alpha 7 integrin expression. Exp Cell Res 265(2):212–220

    Article  CAS  PubMed  Google Scholar 

  17. Fukada S et al (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25(10):2448–2459

    Article  CAS  PubMed  Google Scholar 

  18. Jesse TL, LaChance R, Iademarco MF, Dean DC (1998) Interferon regulatory factor-2 is a transcriptional activator in muscle where It regulates expression of vascular cell adhesion molecule-1. J Cell Biol 140(5):1265–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seale P, Ishibashi J, Holterman C, Rudnicki MA (2004) Muscle satellite cell-specific genes identified by genetic profiling of MyoD-deficient myogenic cell. Dev Biol 275(2):287–300

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH (R01 AR055685) and the Muscular Dystrophy Association (MDA351022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kyba Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Arpke, R.W., Kyba, M. (2016). Flow Cytometry and Transplantation-Based Quantitative Assays for Satellite Cell Self-Renewal and Differentiation. In: Kyba, M. (eds) Skeletal Muscle Regeneration in the Mouse. Methods in Molecular Biology, vol 1460. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3810-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3810-0_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3808-7

  • Online ISBN: 978-1-4939-3810-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics