Skip to main content

Skeletal Muscle Tissue Clearing for LacZ and Fluorescent Reporters, and Immunofluorescence Staining

  • Protocol
  • First Online:
Skeletal Muscle Regeneration in the Mouse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1460))

Abstract

Skeletal muscle is a highly ordered yet complex tissue containing several cell types that interact with each other in order to maintain structure and homeostasis. It is also a highly regenerative tissue that responds to damage in a highly intricate but stereotypic manner, with distinct spatial and temporal kinetics. Proper examination of this process requires one to look at the three-dimensional orientation of the cellular and subcellular components, which can be accomplished through tissue clearing. While there has been a recent surge of protocols to study biology in whole tissue, it has primarily focused on the nervous system. This chapter describes the workflow for whole mount analysis of murine skeletal muscle for LacZ reporters, fluorescent reporters and immunofluorescence staining. Using this technique, we are able to visualize LacZ reporters more effectively in deep tissue samples, and to perform fluorescent imaging with a depth greater than 1700 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA (2013) Cellular dynamics in the muscle satellite cell niche. EMBO Rep 14:1062–1072. doi:10.1038/embor.2013.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Christov C, Chretien F, Abou-Khalil R et al (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18:1397–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yoshida S, Sukeno M, Nabeshima Y-I (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726. doi:10.1126/science.1144885

    Article  CAS  PubMed  Google Scholar 

  4. Keefe AC, Lawson JA, Flygare SD et al (2015) Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun 6:7087. doi:10.1038/ncomms8087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bosnakovski D, Xu Z, Li W et al (2008) Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells 26:3194–3204. doi:10.1634/stemcells.2007-1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sambasivan R, Gayraud-Morel B, Dumas G et al (2009) Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell 16:810–821. doi:10.1016/j.devcel.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  7. Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953. doi:10.1038/nature03594

    Google Scholar 

  8. Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159:123–134. doi:10.1083/jcb.200202092

    Google Scholar 

  9. Tajbakhsh S, Bober E, Babinet C et al (1996) Gene targeting the myf-5 locus with nlacZ reveals expression of this myogenic factor in mature skeletal muscle fibres as well as early embryonic muscle. Dev Dyn 206:291–300. doi:10.1002/(SICI)1097-0177(199607)206:3<291::AID-AJA6>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  10. Renier N, Wu Z, Simon D, Yang J et al (2014) iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159(4):896–910. doi:10.1016/j.cell.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  11. Tainaka K, Kubota SI, Suyama TQ et al (2014) Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159:911–924. doi:10.1016/j.cell.2014.10.034

    Article  CAS  PubMed  Google Scholar 

  12. Susaki EA, Tainaka K, Perrin D et al (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157:726–739. doi:10.1016/j.cell.2014.03.042

    Article  CAS  PubMed  Google Scholar 

  13. Yang B, Treweek JB, Kulkarni RP et al (2014) Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158:945–958. doi:10.1016/j.cell.2014.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tomer R, Ye L, Hsueh B, Deisseroth K (2014) Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 9:1682–1697. doi:10.1038/nprot.2014.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hama H, Hioki H, Namiki K et al (2015) ScaleS: an optical clearing palette for biological imaging. Nat Neurosci 18:1518–1529. doi:10.1038/nn.4107

    Article  CAS  PubMed  Google Scholar 

  16. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  17. Vonesch C, Unser M (2008) A fast thresholded Landweber algorithm for wavelet-regularized multidimensional deconvolution. IEEE Trans Image Process 17:539–549. doi:10.1109/TIP.2008.917103

    Article  CAS  PubMed  Google Scholar 

  18. Schmid B, Schindelin J, Cardona A et al (2010) A high-level 3D visualization API for Java and ImageJ. BMC Bioinformatics 11:274. doi:10.1186/1471-2105-11-274

    Article  PubMed  PubMed Central  Google Scholar 

  19. de Chaumont F, Dallongeville S, Chenouard N et al (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9:690–696. doi:10.1038/nmeth.2075

    Article  PubMed  Google Scholar 

  20. Murphy MM, Lawson JA, Mathew SJ et al (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637. doi:10.1242/jcs098228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140. doi:10.1038/nn.2467

    Article  CAS  PubMed  Google Scholar 

  22. Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138. doi:10.1016/S0092-8674(00)80189-0

    Article  CAS  PubMed  Google Scholar 

  23. Kearney JB, Ambler CA, Monaco KA et al (2002) Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 99:2397–2407

    Article  CAS  PubMed  Google Scholar 

  24. Brazelton TR, Blau HM (2005) Optimizing techniques for tracking transplanted stem cells in vivo. Stem Cells 23:1251–1265. doi:10.1634/stemcells.2005-0149

    Article  PubMed  Google Scholar 

  25. Collins CA, Zammit PS (2009) Isolation and grafting of single muscle fibres. Methods Mol Biol 482:319–330

    Article  CAS  PubMed  Google Scholar 

  26. Jackson KA, Snyder DS, Goodell MA (2004) Skeletal muscle fiber-specific green autofluorescence: potential for stem cell engraftment artifacts. Stem Cells 22:180–187. doi:10.1634/stemcells.22-2-180

    Article  PubMed  Google Scholar 

  27. Liu W, Raben N, Ralston E (2013) Quantitative evaluation of skeletal muscle defects in second harmonic generation images. J Biomed Opt 18:26005. doi:10.1117/1.JBO.18.2.026005

    Article  PubMed  Google Scholar 

  28. Wimmer VC, Möller A (2010) High-resolution confocal imaging in tissue. Methods Mol Biol 611:183–191. doi:10.1007/978-1-60327-345-9_15

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Asakura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Verma, M., Murkonda, B.S., Asakura, Y., Asakura, A. (2016). Skeletal Muscle Tissue Clearing for LacZ and Fluorescent Reporters, and Immunofluorescence Staining. In: Kyba, M. (eds) Skeletal Muscle Regeneration in the Mouse. Methods in Molecular Biology, vol 1460. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3810-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3810-0_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3808-7

  • Online ISBN: 978-1-4939-3810-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics