Skip to main content

Measuring Vascular Permeability In Vivo

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1458))

Abstract

Over the past decades, in vivo vascular permeability measurements have provided significant insight into vascular functions in physiological and pathophysiological conditions such as the response to pro- and anti-angiogenic signaling, abnormality of tumor vasculature and its normalization, and delivery and efficacy of therapeutic agents. Different approaches for vascular permeability measurements have been established. Here, we describe and discuss a conventional 2D imaging method to measure vascular permeability, which was originally documented by Gerlowski and Jain in 1986 (Microvasc Res 31:288–305, 1986) and further developed by Yuan et al. in the early 1990s (Microvasc Res 45:269–289, 1993; Cancer Res 54:352–3356, 1994), and our recently developed 3D imaging method, which advances the approach originally described by Brown et al. in 2001 (Nat Med 7:864–868, 2001).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gerlowski LE, Jain RK (1986) Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31:288–305

    Article  CAS  PubMed  Google Scholar 

  2. Yuan F, Leunig M, Berk DA, Jain RK (1993) Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc Res 45:269–289

    Article  CAS  PubMed  Google Scholar 

  3. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK (1994) Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54:352–3356

    Google Scholar 

  4. Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7:864–868

    Article  CAS  PubMed  Google Scholar 

  5. Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–593

    Article  CAS  PubMed  Google Scholar 

  6. Jain RK, Munn LL, Fukumura D (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2:266–276

    Article  CAS  PubMed  Google Scholar 

  7. Chauhan VP, Jain RK (2013) Strategies for advancing cancer nanomedicine. Nat Mater 12:958–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baxter LT, Jain RK (1989) Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res 37:77–104

    Article  CAS  PubMed  Google Scholar 

  9. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  10. Kesler CT, Pereira ER, Cui CH, Nelson GM, Masuck DJ, Baish JW, Padera TP (2015) Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation. FASEB J 29:3668–3677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brizel DM, Klitzman B, Cook JM, Edwards J, Rosner G, Dewhirst MW (1993) A comparison of tumor and normal tissue microvascular hematocrits and red cell fluxes in a rat window chamber model. Int J Radiat Oncol Biol Phys 25:269–276

    Article  CAS  PubMed  Google Scholar 

  12. Schuler B, Arras M, Keller S, Rettich A, Lundby C, Vogel J, Gassmann M (2010) Optimal hematocrit for maximal exercise performance in acute and chronic erythropoietin-treated mice. Proc Natl Acad Sci U S A 107:419–423

    Article  CAS  PubMed  Google Scholar 

  13. Brown E, Munn LL, Fukumura D, Jain RK (2010) In vivo imaging of tumors. Cold Spring Harbor Protoc 2010(7):pdb.prot5452

    Google Scholar 

  14. Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jain RK (1994) Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 54:4564–4568

    CAS  PubMed  Google Scholar 

  15. Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci U S A 93:14765–14770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    CAS  PubMed  Google Scholar 

  17. Xu L, Cochran DM, Tong RT, Winkler F, Kashiwagi S, Jain RK, Fukumura D (2006) Placenta growth factor overexpression inhibits tumor growth, angiogenesis, and metastasis by depleting vascular endothelial growth factor homodimers in orthotopic mouse models. Cancer Res 66:3971–3977

    Article  CAS  PubMed  Google Scholar 

  18. Kamoun WS, Ley CD, Farrar CT, Duyverman AM, Lahdenranta J, Lacorre DA et al (2009) Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol 27:2542–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chae SS, Kamoun WS, Farrar CT, Kirkpatrick ND, Niemeyer E, de Graaf AM et al (2010) Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin Cancer Res 16:3618–3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB et al (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11:678–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kashiwagi S, Tsukada K, Xu L, Miyazaki J, Kozin SV, Tyrrell JA et al (2008) Perivascular nitric oxide gradients normalize tumor vasculature. Nat Med 14:255–257

    Article  CAS  PubMed  Google Scholar 

  22. Monsky WL, Fukumura D, Gohongi T, Ancukiewcz M, Weich HA, Torchilin VP et al (1999) Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res 59:4129–4135

    CAS  PubMed  Google Scholar 

  23. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612

    Article  CAS  PubMed  Google Scholar 

  24. Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK (2002) Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416:279–280

    Article  CAS  PubMed  Google Scholar 

  25. Monsky WL, Mouta Carreira C, Tsuzuki Y, Gohongi T, Fukumura D, Jain RK (2002) Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 8:1008–1013

    CAS  PubMed  Google Scholar 

  26. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO et al (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A 98:2604–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK (2004) Tissue engineering: creation of long-lasting blood vessels. Nature 428:138–139

    Article  CAS  PubMed  Google Scholar 

  28. Au P, Daheron LM, Duda DG, Cohen KS, Tyrrell JA, Lanning RM et al (2008) Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111:1302–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Samuel R, Daheron L, Liao S, Vardam T, Kamoun WS, Batista A et al (2013) Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc Natl Acad Sci U S A 110:12774–12779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Snuderl M, Batista A, Kirkpatrick ND, Ruiz de Almodovar C, Riedemann L, Walsh EC et al (2013) Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma. Cell 152:1065–1076

    Article  CAS  PubMed Central  Google Scholar 

  31. Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O, Kamoun WS et al (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7:383–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR, Kozin SV et al (2013) Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun 4:2516

    Article  PubMed  Google Scholar 

  33. Chauhan VP, Popovic Z, Chen O, Cui J, Fukumura D, Bawendi MG, Jain RK (2011) Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem 50:11417–11420

    Article  CAS  Google Scholar 

  34. Han HS, Martin JD, Lee J, Harris DK, Fukumura D, Jain RK, Bawendi M (2013) Spatial charge configuration regulates nanoparticle transport and binding behavior in vivo. Angew Chem 52:1414–1419

    Article  CAS  Google Scholar 

  35. Goel S, Gupta N, Walcott BP, Snuderl M, Kesler CT, Kirkpatrick ND et al (2013) Effects of vascular-endothelial protein tyrosine phosphatase inhibition on breast cancer vasculature and metastatic progression. J Natl Cancer Inst 105:1188–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fukumura D, Yuan F, Monsky WL, Chen Y, Jain RK (1997) Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol 151:679–688

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsuzuki Y, Mouta Carreira C, Bockhorn M, Xu L, Jain RK, Fukumura D (2001) Pancreas microenvironment promotes VEGF expression and tumor growth: novel window models for pancreatic tumor angiogenesis and microcirculation. Laboratory investigation. J Tech Methods Pathol 81:1439–1451

    Article  CAS  Google Scholar 

  38. Fukumura D, Yuan F, Endo M, Jain RK (1997) Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions. Am J Pathol 150:713–725

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756

    CAS  PubMed  Google Scholar 

  40. Lichtenbeld HC, Yuan F, Michel CC, Jain RK (1996) Perfusion of single tumor microvessels: application to vascular permeability measurement. Microcirculation 3:349–357

    Article  CAS  PubMed  Google Scholar 

  41. Dolmans DE, Kadambi A, Hill JS, Waters CA, Robinson BC, Walker JP et al (2002) Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res 62:2151–2156

    CAS  PubMed  Google Scholar 

  42. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64:3731–3736

    Article  CAS  PubMed  Google Scholar 

  43. Jain RK, Safabakhsh N, Sckell A, Chen Y, Jiang P, Benjamin L et al (1998) Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci U S A 95:10820–10825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Popovic Z, Liu W, Chauhan VP, Lee J, Wong C, Greytak AB et al (2010) A nanoparticle size series for in vivo fluorescence imaging. Angew Chem 49:8649–8652

    Article  CAS  Google Scholar 

  45. Kadambi A, Mouta Carreira C, Yun CO, Padera TP, Dolmans DE, Carmeliet P et al (2001) Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment: role of VEGF-receptor 2 and host VEGF-A. Cancer Res 61:2404–2408

    CAS  PubMed  Google Scholar 

  46. Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK (2000) Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha→hypoxia response element→VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res 60:6248–6252

    CAS  PubMed  Google Scholar 

  47. Hagendoorn J, Tong R, Fukumura D, Lin Q, Lobo J, Padera TP et al (2006) Onset of abnormal blood and lymphatic vessel function and interstitial hypertension in early stages of carcinogenesis. Cancer Res 66:3360–3364

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Echoe Bouta, Cheryl Cui, Nir Maimon, Lance L. Munn, and Rakesh K. Jain from the E.L. Steele Laboratories and Cedric Blatter and Benjamin Vakoc from the Wellman Center for Photomedicine (Massachusetts General Hospital, USA) for insightful discussions and intellectual input. We would like to thank Lance L. Munn for his help with illustrations and Cedric Blatter for his tremendous help with vessel masking and MATLAB coding for the 3D method. This study was supported by the National Institutes of Health grants P01-CA080124 (DF), DP2-OD008780 (TPP) and R01-HL128168 (TPP, JWB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai Fukumura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Meijer, E.F.J., Baish, J.W., Padera, T.P., Fukumura, D. (2016). Measuring Vascular Permeability In Vivo. In: Ursini-Siegel, J., Beauchemin, N. (eds) The Tumor Microenvironment. Methods in Molecular Biology, vol 1458. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3801-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3801-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3799-8

  • Online ISBN: 978-1-4939-3801-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics