Advertisement

Laser Capture Microdissection as a Tool to Study Tumor Stroma

  • Nicholas R. Bertos
  • Morag Park
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1458)

Abstract

Laser capture microdissection (or LCM) allows for isolation of cells from specific tissue compartments, which can then be followed by DNA, RNA, and/or protein isolation and downstream characterization. Unlike other methods for cell isolation, LCM can be directed towards cells situated in specific anatomical contexts, and is therefore of significant value when investigating the tumor microenvironment, where localization is often key to function. Here, we present a summary of ways in which LCM can be utilized, as well as protocols for the isolation of tumor and tumor-associated stromal elements from frozen breast cancer samples, with a focus on preparation of samples for RNA characterization.

Key words

Laser capture microdissection RNA profiling Quality control Arcturus PixCell IIe Cell isolation 

Notes

Acknowledgements

This work was supported by funding from the Database and Tissue Bank Axis of the “Réseau de Recherche sur le Cancer” of the “Fonds de Recherche du Québec-Santé” and the Québec Breast Cancer Foundation to M.P.

References

  1. 1.
    Wernert N, Locherbach C, Wellmann A, Behrens P, Hugel A (2000) Presence of genetic alterations in microdissected stroma of human colon and breast cancers. J Mol Med 78(7):B30PubMedGoogle Scholar
  2. 2.
    Kurose K, Hoshaw-Woodard S, Adeyinka A, Lemeshow S, Watson PH, Eng C (2001) Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: clues to tumour-microenvironment interactions. Hum Mol Genet 10(18):1907–1913CrossRefPubMedGoogle Scholar
  3. 3.
    Ellsworth DL, Ellsworth RE, Love B, Deyarmin B, Lubert SM, Mittal V, Shriver CD (2004) Genomic patterns of allelic imbalance in disease free tissue adjacent to primary breast carcinomas. Breast Cancer Res Treat 88(2):131–139. doi: 10.1007/s10549-004-1424-7 CrossRefPubMedGoogle Scholar
  4. 4.
    Boersma BJ, Reimers M, Yi M, Ludwig JA, Luke BT, Stephens RM, Yfantis HG, Lee DH, Weinstein JN, Ambs S (2008) A stromal gene signature associated with inflammatory breast cancer. Int J Cancer 122(6):1324–1332. doi: 10.1002/ijc.23237 CrossRefPubMedGoogle Scholar
  5. 5.
    Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11(1):R7. doi: 10.1186/bcr2222 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Martin DN, Boersma BJ, Yi M, Reimers M, Howe TM, Yfantis HG, Tsai YC, Williams EH, Lee DH, Stephens RM, Weissman AM, Ambs S (2009) Differences in the tumor microenvironment between African-American and European-American breast cancer patients. PLoS One 4(2):e4531. doi: 10.1371/journal.pone.0004531 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Witkiewicz AK, Kline J, Queenan M, Brody JR, Tsirigos A, Bilal E, Pavlides S, Ertel A, Sotgia F, Lisanti MP (2011) Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle 10(11):1794–1809CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Planche A, Bacac M, Provero P, Fusco C, Delorenzi M, Stehle JC, Stamenkovic I (2011) Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer. PLoS One 6(5):e18640. doi: 10.1371/journal.pone.0018640 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Harvell DM, Kim J, O'Brien J, Tan AC, Borges VF, Schedin P, Jacobsen BM, Horwitz KB (2013) Genomic signatures of pregnancy-associated breast cancer epithelia and stroma and their regulation by estrogens and progesterone. Horm Cancer 4(3):140–153. doi: 10.1007/s12672-013-0136-z CrossRefPubMedGoogle Scholar
  10. 10.
    Winslow S, Leandersson K, Edsjo A, Larsson C (2015) Prognostic stromal gene signatures in breast cancer. Breast Cancer Res 17:23. doi: 10.1186/s13058-015-0530-2 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ponzo MG, Lesurf R, Petkiewicz S, O’Malley FP, Pinnaduwage D, Andrulis IL, Bull SB, Chughtai N, Zuo D, Souleimanova M, Germain D, Omeroglu A, Cardiff RD, Hallett M, Park M (2009) Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc Natl Acad Sci U S A 106(31):12903–12908. doi: 10.1073/pnas.0810402106 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527. doi: 10.1038/nm1764 CrossRefPubMedGoogle Scholar
  13. 13.
    Pepin F, Bertos N, Laferriere J, Sadekova S, Souleimanova M, Zhao H, Finak G, Meterissian S, Hallett MT, Park M (2012) Gene expression profiling of microdissected breast cancer microvasculature identifies distinct tumor vascular subtypes. Breast Cancer Res 14(4):R120. doi: 10.1186/bcr3246 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Finak G, Sadekova S, Pepin F, Hallett M, Meterissian S, Halwani F, Khetani K, Souleimanova M, Zabolotny B, Omeroglu A, Park M (2006) Gene expression signatures of morphologically normal breast tissue identify basal-like tumors. Breast Cancer Res 8(5):R58. doi: 10.1186/bcr1608 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hildenbrand R, Schaaf A, Dorn-Beineke A, Allgayer H, Sutterlin M, Marx A, Stroebel P (2009) Tumor stroma is the predominant uPA-, uPAR-, PAI-1-expressing tissue in human breast cancer: prognostic impact. Histol Histopathol 24(7):869–877PubMedGoogle Scholar
  16. 16.
    Reddy LA, Mikesh L, Moskulak C, Harvey J, Sherman N, Zigrino P, Mauch C, Fox JW (2014) Host response to human breast Invasive Ductal Carcinoma (IDC) as observed by changes in the stromal proteome. J Proteome Res 13(11):4739–4751. doi: 10.1021/pr500620x CrossRefPubMedGoogle Scholar
  17. 17.
    Liu S, Umezu-Goto M, Murph M, Lu Y, Liu W, Zhang F, Yu S, Stephens LC, Cui X, Murrow G, Coombes K, Muller W, Hung MC, Perou CM, Lee AV, Fang X, Mills GB (2009) Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 15(6):539–550. doi: 10.1016/j.ccr.2009.03.027 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bronisz A, Godlewski J, Wallace JA, Merchant AS, Nowicki MO, Mathsyaraja H, Srinivasan R, Trimboli AJ, Martin CK, Li F, Yu L, Fernandez SA, Pecot T, Rosol TJ, Cory S, Hallett M, Park M, Piper MG, Marsh CB, Yee LD, Jimenez RE, Nuovo G, Lawler SE, Chiocca EA, Leone G, Ostrowski MC (2012) Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 14(2):159–167. doi: 10.1038/ncb2396 CrossRefGoogle Scholar
  19. 19.
    Pickup MW, Laklai H, Acerbi I, Owens P, Gorska AE, Chytil A, Aakre M, Weaver VM, Moses HL (2013) Stromally derived lysyl oxidase promotes metastasis of transforming growth factor-beta-deficient mouse mammary carcinomas. Cancer Res 73(17):5336–5346. doi: 10.1158/0008-5472.CAN-13-0012 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Valencia T, Kim JY, Abu-Baker S, Moscat-Pardos J, Ahn CS, Reina-Campos M, Duran A, Castilla EA, Metallo CM, Diaz-Meco MT, Moscat J (2014) Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell 26(1):121–135. doi: 10.1016/j.ccr.2014.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Masiero M, Simoes FC, Han HD, Snell C, Peterkin T, Bridges E, Mangala LS, Wu SY, Pradeep S, Li D, Han C, Dalton H, Lopez-Berestein G, Tuynman JB, Mortensen N, Li JL, Patient R, Sood AK, Banham AH, Harris AL, Buffa FM (2013) A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell 24(2):229–241. doi: 10.1016/j.ccr.2013.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shimoda M, Principe S, Jackson HW, Luga V, Fang H, Molyneux SD, Shao YW, Aiken A, Waterhouse PD, Karamboulas C, Hess FM, Ohtsuka T, Okada Y, Ailles L, Ludwig A, Wrana JL, Kislinger T, Khokha R (2014) Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat Cell Biol 16(9):889–901. doi: 10.1038/ncb3021 CrossRefPubMedGoogle Scholar
  23. 23.
    Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, Dias-Santagata D, Koeva M, Stemmer SM, Whitesell L, Lindquist S (2014) The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell 158(3):564–578. doi: 10.1016/j.cell.2014.05.045 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ghosh S, Ashcraft K, Jahid MJ, April C, Ghajar CM, Ruan J, Wang H, Foster M, Hughes DC, Ramirez AG, Huang T, Fan JB, Hu Y, Li R (2013) Regulation of adipose oestrogen output by mechanical stress. Nat Commun 4:1821. doi: 10.1038/ncomms2794 CrossRefPubMedGoogle Scholar
  25. 25.
    Wolford CC, McConoughey SJ, Jalgaonkar SP, Leon M, Merchant AS, Dominick JL, Yin X, Chang Y, Zmuda EJ, O’Toole SA, Millar EK, Roller SL, Shapiro CL, Ostrowski MC, Sutherland RL, Hai T (2013) Transcription factor ATF3 links host adaptive response to breast cancer metastasis. J Clin Invest 123(7):2893–2906. doi: 10.1172/JCI64410 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu X, Nugoli M, Laferriere J, Saleh SM, Rodrigue-Gervais IG, Saleh M, Park M, Hallett MT, Muller WJ, Giguere V (2011) Stromal retinoic acid receptor beta promotes mammary gland tumorigenesis. Proc Natl Acad Sci U S A 108(2):774–779. doi: 10.1073/pnas.1011845108 CrossRefPubMedGoogle Scholar
  27. 27.
    Becker MA, Hou X, Harrington SC, Weroha SJ, Gonzalez SE, Jacob KA, Carboni JM, Gottardis MM, Haluska P (2012) IGFBP ratio confers resistance to IGF targeting and correlates with increased invasion and poor outcome in breast tumors. Clin Cancer Res 18(6):1808–1817. doi: 10.1158/1078-0432.CCR-11-1806 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M, Wrana JL (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556. doi: 10.1016/j.cell.2012.11.024 CrossRefPubMedGoogle Scholar
  29. 29.
    Wallace JA, Li F, Balakrishnan S, Cantemir-Stone CZ, Pecot T, Martin C, Kladney RD, Sharma SM, Trimboli AJ, Fernandez SA, Yu L, Rosol TJ, Stromberg PC, Lesurf R, Hallett M, Park M, Leone G, Ostrowski MC (2013) Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer. PLoS One 8(8):e71533. doi: 10.1371/journal.pone.0071533 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Garbe JC, Pepin F, Pelissier FA, Sputova K, Fridriksdottir AJ, Guo DE, Villadsen R, Park M, Petersen OW, Borowsky AD, Stampfer MR, Labarge MA (2012) Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia. Cancer Res 72(14):3687–3701. doi: 10.1158/0008-5472.CAN-12-0157 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274(5289):998–1001CrossRefPubMedGoogle Scholar
  32. 32.
    Bonner RF, Emmert-Buck M, Cole K, Pohida T, Chuaqui R, Goldstein S, Liotta LA (1997) Laser capture microdissection: molecular analysis of tissue. Science 278(5342):1481–1483CrossRefPubMedGoogle Scholar
  33. 33.
    Roy Chowdhuri S, Hanson J, Cheng J, Rodriguez-Canales J, Fetsch P, Balis U, Filie AC, Giaccone G, Emmert-Buck MR, Hipp JD (2012) Semiautomated laser capture microdissection of lung adenocarcinoma cytology samples. Acta Cytol 56(6):622–631. doi: 10.1159/000342984 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Rosalind and Morris Goodman Cancer Research CentreMcGill UniversityMontréalCanada
  2. 2.Department of Experimental MedicineMcGill UniversityMontréalCanada
  3. 3.Department of BiochemistryMcGill UniversityMontréalCanada
  4. 4.Department of OncologyMcGill UniversityMontréalCanada
  5. 5.Department of PathologyMcGill UniversityMontréalCanada

Personalised recommendations