Skip to main content

Methods to Evaluate the Antitumor Activity of Immune Checkpoint Inhibitors in Preclinical Studies

  • Protocol
  • First Online:
The Tumor Microenvironment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1458))

Abstract

Immune checkpoint inhibitors (ICI) are a new class of drugs characterized by their ability to enhance antitumor immune responses through the blockade of critical cell surface receptors involved in the maintenance of peripheral tolerance. The recent approval of ICI targeting CTLA-4 or PD-1 for the treatment of cancer constitutes a major breakthrough in the field of oncology and demonstrates the potential of immune-mediated therapies in achieving durable cancer remissions. The identification of new immune regulatory pathways that could be targeted to reactivate or boost antitumor immunity is now a very active field of research. In this context, the use of syngeneic mouse models and immune monitoring techniques are the cornerstone of proof-of-concept studies. In this chapter, we describe the general methodology to evaluate antitumor activity of ICI in immunocompetent mice. We outline protocols to reliably establish tumors in mice and generate lung metastasis through tail vein injections with the aim of testing the efficacy of ICI. We also present methods to analyze the composition of the tumor immune-infiltrate by multicolor flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. doi:10.1126/science.1203486

    Article  CAS  PubMed  Google Scholar 

  2. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. doi:10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161:205–214. doi:10.1016/j.cell.2015.03.030

    Article  CAS  PubMed  Google Scholar 

  4. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461. doi:10.1016/j.ccell.2015.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi:10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schadendorf D, Hodi FS, Robert C et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. doi:10.1200/JCO.2014.56.2736

    Google Scholar 

  7. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736. doi:10.1126/science.271.5256.1734

    Article  CAS  PubMed  Google Scholar 

  8. Simpson TR, Li F, Montalvo-Ortiz W et al (2013) Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 210:1695–1710. doi:10.1084/jem.20130579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Selby MJ, Engelhardt JJ, Quigley M et al (2013) Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 1:32–42. doi:10.1158/2326-6066.CIR-13-0013

    Article  CAS  PubMed  Google Scholar 

  10. Romano E, Kusio-Kobialka M, Foukas PG et al (2015) Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci U S A 112:6140–6145. doi:10.1073/pnas.1417320112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gubin MM, Zhang X, Schuster H et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515:577–581. doi:10.1038/nature13988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brahmer JR, Drake CG, Wollner I et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28:3167–3175. doi:10.1200/JCO.2009.26.7609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hirano F, Kaneko K, Tamura H et al (2005) Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65:1089–1096

    CAS  PubMed  Google Scholar 

  15. Brahmer JR, Tykodi SS, Chow LQM et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. doi:10.1056/NEJMoa1200694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. doi:10.1056/NEJMoa1200690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang C-H, Qiu J, O’Sullivan D et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241. doi:10.1016/j.cell.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  18. Dahan R, Sega E, Engelhardt J et al (2015) FcγRs modulate the anti-tumor activity of antibodies targeting the PD-1/PD-L1 axis. Cancer Cell 28:285–295. doi:10.1016/j.ccell.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  19. Postow MA, Chesney J, Pavlick AC et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017. doi:10.1056/NEJMoa1414428

    Article  PubMed  Google Scholar 

  20. Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14:561–584. doi:10.1038/nrd4591

    Article  CAS  PubMed  Google Scholar 

  21. Gould SE, Junttila MR, de Sauvage FJ (2015) Translational value of mouse models in oncology drug development. Nat Med 21:431–439. doi:10.1038/nm.3853

    Article  CAS  PubMed  Google Scholar 

  22. Stagg J, Divisekera U, McLaughlin N et al (2010) Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A 107:1547–1552. doi:10.1073/pnas.0908801107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stagg J, Loi S, Divisekera U et al (2011) Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci U S A 108:7142–7147. doi:10.1073/pnas.1016569108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Allard B, Pommey S, Smyth MJ, Stagg J (2013) Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res 19:5626–5635. doi:10.1158/1078-0432.CCR-13-0545

    Article  CAS  PubMed  Google Scholar 

  25. Stagg J, Divisekera U, Duret H et al (2011) CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res 71:2892–2900. doi:10.1158/0008-5472.CAN-10-4246

    Article  CAS  PubMed  Google Scholar 

  26. Stagg J, Beavis PA, Divisekera U et al (2012) CD73-deficient mice are resistant to carcinogenesis. Cancer Res 72:2190–2196. doi:10.1158/0008-5472.CAN-12-0420

    Article  CAS  PubMed  Google Scholar 

  27. Stagg J, Sharkey J, Pommey S et al (2008) Antibodies targeted to TRAIL receptor-2 and ErbB-2 synergize in vivo and induce an antitumor immune response. Proc Natl Acad Sci U S A A105:16254–16259. doi:10.1073/pnas.0806849105

    Article  Google Scholar 

  28. Beavis PA, Divisekera U, Paget C et al (2013) Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc Natl Acad Sci U S A 110:14711–14716. doi:10.1073/pnas.1308209110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loi S, Pommey S, Haibe-Kains B et al (2013) CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A 110:11091–11096. doi:10.1073/pnas.1222251110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Allard B, Turcotte M, Spring K et al (2014) Anti-CD73 therapy impairs tumor angiogenesis. Int J Cancer 134:1466–1473. doi:10.1002/ijc.28456

    Article  CAS  PubMed  Google Scholar 

  31. Beavis PA, Milenkovski N, Henderson MA et al (2015) Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res 3:506–517. doi:10.1158/2326-6066.CIR-14-0211

    Article  CAS  PubMed  Google Scholar 

  32. Mittal D, Young A, Stannard K et al (2014) Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res 74:3652–3658. doi:10.1158/0008-5472.CAN-14-0957

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

J. Stagg was a paid consultant for MedImmune, Palobiofarma, and Surface Oncology, has received research grants from MedImmune, Palobiofarma, and Surface Oncology, and is a member of the Scientific Advisory Board of Surface Oncology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Stagg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Allard, B., Allard, D., Stagg, J. (2016). Methods to Evaluate the Antitumor Activity of Immune Checkpoint Inhibitors in Preclinical Studies. In: Ursini-Siegel, J., Beauchemin, N. (eds) The Tumor Microenvironment. Methods in Molecular Biology, vol 1458. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3801-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3801-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3799-8

  • Online ISBN: 978-1-4939-3801-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics