Skip to main content

Quantitative Real-Time PCR Analysis of Gene Transcripts of Mosquito Follicles

  • Protocol
  • First Online:
Book cover Oogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1457))

  • 1674 Accesses

Abstract

Real-time (quantitative) PCR, or QPCR, has become an indispensible tool for characterizing gene expression. Depending on the experimental design, researchers can use either the relative or absolute (standard curve) method to quantify transcript abundance. Characterizing the expression of genes in mosquito ovaries will require use of the standard curve method of quantification. Here, I describe reagents and equipment necessary to run standard curve QPCR. I also provide details on the construction of the standard linear curve and calculations required to determine transcript abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Telang A, Wells MA (2004) The effect of larval and adult nutrition on successful autogenous egg production by a mosquito. J Insect Physiol 50:677–685

    Article  CAS  PubMed  Google Scholar 

  2. Dana AN, Hong YS, Kern MK et al (2005) Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae. BMC Genomics 6. http://www.biomedcentral.com/1471-2164/6/5

  3. Marinotti O, Nguyen QK, Calvo E, James AA, Ribeiro JMC (2005) Microarray analysis of genes showing variable expression following a blood meal in Anopheles gambiae. Insect Mol Biol 14:365–373

    Article  CAS  PubMed  Google Scholar 

  4. Telang A, Rechel JR, Brandt JR, Donnell DM (2013) Analysis of ovary-specific genes in relation to egg maturation and female nutritional condition in the mosquitoes Georgecraigius atropalpus and Aedes aegypti (Diptera: Culicidae). J Insect Physiol 59:283–294

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marinotti O, Capurro ML, Nirmala X, Calvo E, James AA (2006) Structure and expression of the lipophorin-encoding gene of the malaria vector, Anopheles gambiae. Comp Biochem Physiol B Biochem Mol Biol 144:101–109

    Article  PubMed  Google Scholar 

  7. Harizanova N, Georgieva T, Dunkov BC, Yoshiga T, Law JH (2005) Aedes aegypti transferrin. Gene structure, expression pattern, and regulation. Insect Mol Biol 14:79–88

    Article  CAS  PubMed  Google Scholar 

  8. Kaufmann C, Merzendorfer H, Gade G (2009) The adipokinetic hormone system in Culicinae (Diptera: Culicidae): molecular identification and characterization of two adipokinetic hormone (AKH) precursors from Aedes aegypti and Culex pipiens and two putative AKH receptor variants from A. aegypti. Insect Biochem Mol Biol 39:770–781

    Article  CAS  PubMed  Google Scholar 

  9. Telang A, Peterson B, Frame L, Baker E, Brown MR (2010) Analysis of molecular markers for metamorphic competency and their response to starvation or feeding in the mosquito, Aedes aegypti (Diptera: Culicidae). J Insect Physiol 56:1925–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alto BW, Reiskind MH, Lounibos LP (2008) Size alters susceptibility of vectors to dengue virus infection and dissemination. Am J Trop Med Hyg 79:688–695

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sieglaff DH, Duncan KA, Brown MR (2005) Expression of genes encoding proteins involved in ecdysteroidogenesis in the female mosquito, Aedes aegypti. Insect Biochem Mol Biol 35:471–490

    Article  CAS  PubMed  Google Scholar 

  12. Christophers SR (1911) The development of the egg follicle in Anophelines. Paludism 2:73–87

    Google Scholar 

  13. Paton MG, Karunaratne SH, Giakoumaki E, Roberts N, Hemingway J (2000) Quantitative analysis of gene amplification in insecticide-resistant Culex mosquitoes. Biochem J 346(Part 1):17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This QPCR technique was developed during work funded by NIH/NIAID grant K22AI070644 to A. Telang, and I thank Julie Rechel for technical assistance during this work. The University of South Florida Sarasota-Manatee Arts and Science Dean’s fund to A. Telang also supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Telang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Telang, A. (2016). Quantitative Real-Time PCR Analysis of Gene Transcripts of Mosquito Follicles. In: Nezis, I. (eds) Oogenesis. Methods in Molecular Biology, vol 1457. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3795-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3795-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3793-6

  • Online ISBN: 978-1-4939-3795-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics