Skip to main content

Quantitative Microinjection of Morpholino Antisense Oligonucleotides into Mouse Oocytes to Examine Gene Function in Meiosis-I

  • Protocol
  • First Online:
Oogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1457))

Abstract

Specific protein depletion is a powerful approach for assessing individual gene function in cellular processes, and has been extensively employed in recent years in mammalian oocyte meiosis-I. Conditional knockout mice and RNA interference (RNAi) methods such as siRNA or dsRNA microinjection are among several approaches to have been applied in this system over the past decade. RNAi by microinjection of Morpholino antisense Oligonucleotides (MO), in particular, has proven highly popular and tractable in many studies, since MOs have high specificity of interaction, low cell toxicity, and are more stable than other microinjected RNAi molecules. Here, we describe a method of MO microinjection into the mouse germinal vesicle-stage (GV) oocyte followed by a simple immunofluorescence approach for examination of gene function in meiosis-I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones KT, Lane SI (2013) Molecular causes of aneuploidy in mammalian eggs. Development 140:3719–3730

    Article  CAS  PubMed  Google Scholar 

  2. Hassold TJ, Hunt PA (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291

    Article  CAS  PubMed  Google Scholar 

  3. Nagaoka SI, Hassold TJ, Hunt PA (2012) Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet 18:493–504

    Article  Google Scholar 

  4. Howe K, FitzHarris G (2013) Recent insights into spindle function in mammalian oocytes and early embryos. Biol Reprod 89:1–9

    Article  Google Scholar 

  5. Li R, Albertini DF (2013) The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol 14:141–152

    Article  CAS  PubMed  Google Scholar 

  6. Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, Novara PV, Fadini R (2015) Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update 21:427–454

    Article  PubMed  Google Scholar 

  7. Kudo NR, Wassmann K, Anger M, Schuh M, Wirth KG, Xu H, Helmhart W, Kudo H, McKay M, Maro B, Ellenberg J, de Boer P, Nasmyth K (2006) Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell 126:135–146

    Article  CAS  PubMed  Google Scholar 

  8. Sun QY, Liu K, Kikuchi K (2008) Oocyte-specific knockout: a novel in vivo approach for studying gene functions during folliculogenesis, oocyte maturation, fertilization, and embryogenesis. Biol Reprod 79:1014–1020

    Article  CAS  PubMed  Google Scholar 

  9. Singh P, Schimenti JC, Bolcun-Filas E (2015) A mouse geneticist’s practical guide to CRISPR applications. Genetics 199:1–15

    Article  CAS  PubMed  Google Scholar 

  10. Seruggia D, Montoliu L (2014) The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals. Transgenic Res 23:707–716

    Article  CAS  PubMed  Google Scholar 

  11. Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9:1956–1968

    Article  CAS  PubMed  Google Scholar 

  12. Lane SI, Chang HY, Jennings PC, Jones KT (2010) The Aurora kinase inhibitor ZM447439 accelerates first meiosis in mouse oocytes by overriding the spindle assembly checkpoint. Reproduction 140:521–530

    Article  CAS  Google Scholar 

  13. Nguyen A, Gentilello AS, Balboula AZ, Shirivastava V, Ohring J, Schindler K (2014) Phosphorylation of threonine 3 on histone H3 by haspin kinase is required for meiosis in mouse oocytes. J Cell Sci 127:5066–5078

    Article  PubMed  PubMed Central  Google Scholar 

  14. FitzHarris G (2009) A shift from kinesin 5-dependent metaphase spindle function during preimplantation development in mouse. Development 136:2111–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coelho PA, Bury L, Sharif B, Riparvelli MG, Fu J, Callaini G, Glover DM, Zernicka-Goetz M (2013) Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles. Dev Cell 9:586–597

    Article  Google Scholar 

  16. Yoshida S, Kaido M, Kitajima TS (2015) Inherent instability of correct kinetochore-microtubule attachments during meiosis I in oocytes. Dev Cell 33:589–602

    Article  CAS  PubMed  Google Scholar 

  17. Balboula AZ, Schindler K (2014) Selective disruption of Aurora C kinase reveals distinct functions from Aurora B kinase during meiosis in mouse oocytes. PLoS Genet 10:e1004194

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dalton CM, Carroll J (2013) Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J Cell Sci 126:2955–2964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Melkonian KA, Maier KC, Godfrey JE, Rodgers M, Schroer TA (2007) Mechanism of dynamitin-mediated disruption of dynactin. J Biol Chem 282:19355–19364

    Article  CAS  PubMed  Google Scholar 

  20. Summerton JE (2007) Morpholino, siRNA and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity. Curr Top Med Chem 7:651–660

    Article  CAS  PubMed  Google Scholar 

  21. Eisen SE, Smith JC (2008) Controlling morpholino experiments: don’t stop making antisense. Development 135:1735–1743

    Article  CAS  PubMed  Google Scholar 

  22. Brunet S, Dumont J, Lee KW, Kinoshita K, Hikal P, Gruss OJ, Maro B, Verlhac M-H (2008) Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS One 3:e3338

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pfender S, Kuznetsov V, Pasternak M, Tischer T, Santhanam B, Schuh M (2015) Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes. Nature 524:239–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharif B, Na J, Lykke-Harmann K, McLaughlin SH, Laue E, Glover DM, Zernicka-Goetz M (2010) The chromosome passenger complex is required for fidelity of chromosome transmission and cytokinesis in meiosis of mouse oocytes. J Cell Sci 123:4292–4300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baumann C, Viveiros MM (2015) Meiotic spindle assessment in mouse oocytes by siRNA-mediated silencing. J Vis Exp. doi:10.3791/53586

    Google Scholar 

  26. Homer H, Gui L, Carroll J (2009) BubR1 is required for prophase I arrest and prometaphase progression during female meiosis I. Science 326:991–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Homer H, McDougall A, Levaseur M, Yallop K, Murdoch AP, Herbert M (2005) Mad2 prevents aneuploidy and premature proteolysis and cyclin B and securin during meiosis I in mouse oocytes. Genes Dev 19:202–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marangos P, Stevense M, Niaka K, Lagoudaki M, Nabti I, Jessberger R, Carroll J (2015) DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age. Nat Commun 6:8706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Christophe L, Terret ME, Djiane A, Rassinier P, Maro B, Verlhac M-H (2002) Meiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein (MISS), a new MAPK substrate. J Cell Biol 157:603–613

    Article  Google Scholar 

  30. Madgwick S, Hansen DV, Levasseur M, Jackson P, Jones KT (2006) Mouse Emi2 is required to enter meiosis II by reestablishing cyclin B1 during interkinesis. J Cell Biol 174:791–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herbert M, Levasseur M, Homer H, Yallop K, Murdoch A, McDougall A (2003) Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1. Nat Cell Biol 5:1023–1025

    Article  CAS  PubMed  Google Scholar 

  32. Tsurumi C, Hoffmann S, Geley S, Graeser R, Polansky Z (2004) The spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes. J Cell Biol 167:1037–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Balboula AZ, Stein P, Schultz RM, Schindler K (2014) Knockdown of RBBP7 unveils a requirement of histone deacetylation for CPC function in mouse oocytes. Cell Cycle 13:600–611

    Article  CAS  Google Scholar 

  34. Illingworth C, Pirmadjid N, Serhal P, Howe K, FitzHarris G (2010) MCAK regulates chromosome alignment but is not necessary for preventing aneuploidy in mouse oocyte meiosis I. Development 137:2133–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Butler JE, Lechene C, Biggers JD (1988) Noninvasive measurement of glucose uptake by two populations of murine embryos. Biol Reprod 39:779–786

    Article  CAS  PubMed  Google Scholar 

  36. Fowler RE, Edwards RG (1957) Induction of superovulation and pregnancy in mature mice by gonadotrophins. J Endocrinol 15:374–384

    Article  CAS  PubMed  Google Scholar 

  37. Byers SL, Payson SJ, Taft RA (2006) Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs). Theriogenology 65:1716–1726

    Article  PubMed  Google Scholar 

  38. Gosden RG, Telfer E (1987) Scaling of follicular sizes in mammalian ovaries. J Zool 211:157–168

    Article  Google Scholar 

  39. Xiao S, Duncan FE, Bai L, Nguyen CT, Shea LD, Woodruff TK (2015) Size-specific follicle selection improves mouse oocyte reproductive outcomes. Reproduction 150:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schultz RM, Letourneau GE, Wassarman PM (1979) Program of early development in the mammal: changes in the patterns and absolute rates of tubulin and total protein synthesis during oocyte growth in the mouse. Dev Biol 73:120–133

    Article  CAS  PubMed  Google Scholar 

  41. Schultz RM, Letourneau GE, Wassarman PM (1978) Meiotic maturation of mouse oocytes in vitro: protein synthesis in nucleate and anucleate oocyte fragments. J Cell Sci 30:251–264

    CAS  PubMed  Google Scholar 

  42. Baltz JM, Tartia AP (2010) Cell volume regulation in oocytes and early embryos: connecting physiology to successful culture media. Hum Reprod Update 16:166–176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Works in GFs lab is supported by CIHR, NSERC, CFI, and Fondation Jean-Louis Lévesque. Elements of the described procedure were learned from labs of John Carroll, Karl Swann, Jay Baltz, and Tomohiro Kono. We thank Jenna Haverfield, Cayetana Vázquez-Diez, and Angus MacCaulay for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg FitzHarris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nakagawa, S., FitzHarris, G. (2016). Quantitative Microinjection of Morpholino Antisense Oligonucleotides into Mouse Oocytes to Examine Gene Function in Meiosis-I. In: Nezis, I. (eds) Oogenesis. Methods in Molecular Biology, vol 1457. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3795-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3795-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3793-6

  • Online ISBN: 978-1-4939-3795-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics