Skip to main content

Cytoskeleton and Cytoskeleton-Bound RNA Visualization in Frog and Insect Oocytes

  • Protocol
  • First Online:
Oogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1457))

Abstract

The majority of oocyte functions involves and depends on the cytoskeletal elements, which include microtubules and actin and cytokeratin filaments. Various structures and molecules are temporarily or permanently bound to the cytoskeletal elements and their functions rely on cytoskeleton integrity and its timely assembly. Thus the accurate visualization of cytoskeleton is often crucial for studies and analyses of oocyte structure and functions. Here we describe several reliable methods for microtubule and/or microfilaments preservation and visualization in Xenopus oocyte extracts, and in situ in live and fixed insect and frog (Xenopus) oocytes. In addition, we describe visualization of cytoskeleton-bound RNAs using molecular beacons in live Xenopus oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kloc M, Dallaire P, Reunov A, Major F (2011) Structural messenger RNA contains cytokeratin polymerization and depolymerization signals. Cell Tissue Res 346:209–222

    Article  CAS  PubMed  Google Scholar 

  2. Kloc M, Foreman V, Reddy SA (2011) Binary function of mRNA. Biochemie 93:1955–1961

    Article  CAS  Google Scholar 

  3. Kloc M, Wilk K, Vargas D, Shirato Y, Bilinski S, Etkin LD (2005) Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes. Development 132:3445–3457

    Article  CAS  PubMed  Google Scholar 

  4. Kloc M, Bilinski S, Dougherty MT (2007) Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: three-dimensional and ultrastructural analysis. Exp Cell Res 313:1639–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kloc M, Etkin LD (2005) RNA localization mechanisms in oocytes. J Cell Sci 118:269–282

    Article  CAS  PubMed  Google Scholar 

  6. Miyara F, Han Z, Gao S, Vassena R, Latham KE (2006) Non-equivalence of embryonic and somatic cell nuclei affecting spindle composition in clones. Dev Biol 289:206–217

    Article  CAS  PubMed  Google Scholar 

  7. Bilinski SM, Jaglarz MK, Dougherty MT, Kloc M (2010) Electron microscopy, immunostaining, cytoskeleton visualization, in situ hybridization, and three-dimensional reconstruction of Xenopus oocytes. Methods 51:11–19

    Article  CAS  PubMed  Google Scholar 

  8. Wallace RA, Jared DW, Dumont JN, Sega MW (1973) Protein incorporation by isolated amphibian oocytes. 3. Optimum incubation conditions. J Exp Zool 184:321–333

    Article  CAS  PubMed  Google Scholar 

  9. Gurdon JB (1968) Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J Embryol Exp Morphol 20:401–414

    CAS  PubMed  Google Scholar 

  10. Tworzydlo W, Kisiel E, Jankowska W, Bilinski SM (2014) Morphology and ultrastructure of the germarium in panoistic ovarioles of a basal “apterygotous” insect, Thermobia domestica. Zoology 117:200–206

    Article  PubMed  Google Scholar 

  11. Bilinski SM, Klag J, Kubrakiewicz J (1995) Subcortical microtubule network separates the periplasm from the endoplasm and is responsible for maintaining the position of accessory nuclei in hymenopteran oocytes. Roux’s Arch Dev Biol 205:54–61

    Article  Google Scholar 

  12. Mazurkiewicz M, Kubrakiewicz J (2001) Intercellular cytoplasm transport during oogenesis of the moth midge, Tinearia alternata Say (Diptera: Psychodidae). Folia Biol (Krakow) 49:205–213

    CAS  Google Scholar 

  13. Kloc M, Bilinski S, Dougherty MT, Brey EM, Etkin LD (2004) Formation, architecture and polarity of female germline cyst in Xenopus. Dev Biol 266:43–61

    Article  CAS  PubMed  Google Scholar 

  14. Kloc M (2009) Teachings from the egg: new and unexpected functions of RNAs. Mol Reprod Dev 76:922–932

    Article  CAS  PubMed  Google Scholar 

  15. Kloc M (2008) Emerging novel functions of RNAs, and binary phenotype? Dev Biol 317:401–404

    Article  CAS  PubMed  Google Scholar 

  16. Alarcon VB, Elinson RP (2001) RNA anchoring in the vegetal cortex of the Xenopus oocyte. J Cell Sci 114:1731–1741

    CAS  PubMed  Google Scholar 

  17. Bratu DP, Cha BJ, Mhlanga MM, Kramer FR, Tyagi S (2003) Visualizing the distribution and transport of mRNAs in living cells. Proc Natl Acad Sci U S A 100:13308–13313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meyerhof PG, Masui Y (1979) Properties of a cytostatic factor from Xenopus laevis eggs. Dev Biol 72:182–187

    Article  CAS  PubMed  Google Scholar 

  19. Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36:581–605

    Article  CAS  PubMed  Google Scholar 

  20. Minshull J, Sun H, Tonks NK, Murray AW (1994) A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79:475–786

    Article  CAS  PubMed  Google Scholar 

  21. Bilinski SM, Jaglarz M (1999) Organization and possible functions of microtubule cytoskeleton in hymenopteran nurse cells. Cell Motil Cytoskeleton 43:213–220

    Article  CAS  PubMed  Google Scholar 

  22. Zelazowska M, Bilinski S (2001) Ultrastructure and function of nurse cells in phtirapterans. Possible function of ramified nurse cell nuclei in the cytoplasm transfer. Arthropod Struct Dev 30:135–143

    Article  CAS  PubMed  Google Scholar 

  23. Bazile F, Pascal A, Arnal I, Le Clainche C, Chesnel F, Kubiak JZ (2009) Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells. Carcinogenesis 30:555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Kloc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kloc, M., Bilinski, S., Kubiak, J.Z. (2016). Cytoskeleton and Cytoskeleton-Bound RNA Visualization in Frog and Insect Oocytes. In: Nezis, I. (eds) Oogenesis. Methods in Molecular Biology, vol 1457. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3795-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3795-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3793-6

  • Online ISBN: 978-1-4939-3795-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics