Skip to main content

Quantitative Immunofluorescence Analysis of Nucleolus-Associated Chromatin

  • Protocol
  • First Online:
Book cover The Nucleolus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1455))

Abstract

The nuclear distribution of eu- and heterochromatin is nonrandom, heterogeneous, and dynamic, which is mirrored by specific spatiotemporal arrangements of histone posttranslational modifications (PTMs). Here we describe a semiautomated method for the analysis of histone PTM localization patterns within the mammalian nucleus using confocal laser scanning microscope images of fixed, immunofluorescence stained cells as data source. The ImageJ-based process includes the segmentation of the nucleus, furthermore measurements of total fluorescence intensities, the heterogeneity of the staining, and the frequency of the brightest pixels in the region of interest (ROI). In the presented image analysis pipeline, the perinucleolar chromatin is selected as primary ROI, and the nuclear periphery as secondary ROI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Wit E, De Laat W (2012) A decade of 3C technologies: insights into nuclear organization. Genes Dev 26:11–24. doi:10.1101/gad.179804.111

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bickmore WA (2013) The spatial organization of the human genome. Annu Rev Genomics Hum Genet 14:67–84. doi:10.1146/annurev-genom-091212-153515

    Article  CAS  PubMed  Google Scholar 

  3. Bickmore WA, van Steensel B (2013) Genome architecture: domain organization of interphase chromosomes. Cell 152:1270–1284. doi:10.1016/j.cell.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  4. Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14:390–403. doi:10.1038/nrg3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rivera CM, Ren B (2013) Mapping human epigenomes. Cell 155:39–55. doi:10.1016/j.cell.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  6. Tanay A, Cavalli G (2013) Chromosomal domains: epigenetic contexts and functional implications of genomic compartmentalization. Curr Opin Genet Dev 23:197–203. doi:10.1016/j.gde.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  7. Sexton T, Cavalli G (2015) The role of chromosome domains in shaping the functional genome. Cell 160:1049–1059. doi:10.1016/j.cell.2015.02.040

    Article  CAS  PubMed  Google Scholar 

  8. Furlan-Magaril M, Várnai C, Nagano T, Fraser P (2015) 3D genome architecture from populations to single cells. Curr Opin Genet Dev 31:36–41. doi:10.1016/j.gde.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  9. Naumova N, Imakaev M, Fudenberg G et al (2013) Organization of the mitotic chromosome. Science 342:948–953. doi:10.1126/science.1236083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phillips-Cremins JE, Sauria MEG, Sanyal A et al (2013) Architectural protein subclasses shape 3d organization of genomes during lineage commitment. Cell 153:1281–1295. doi:10.1016/j.cell.2013.04.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van Steensel B, Dekker J (2010) Genomics tools for unraveling chromosome architecture. Nat Biotechnol 28:1089–1095. doi:10.1038/nbt.1680

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cremer T, Cremer M, Hübner B et al (2015) The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 589:2931–2943. doi:10.1016/j.febslet.2015.05.037

    Article  CAS  PubMed  Google Scholar 

  13. Even-Faitelson L, Hassan-Zadeh V, Baghestani Z, Bazett-Jones DP (2016) Coming to terms with chromatin structure. Chromosoma 125:95. doi:10.1007/s00412-015-0534-9

    Article  CAS  PubMed  Google Scholar 

  14. Lakadamyali M, Cosma MP (2015) Advanced microscopy methods for visualizing chromatin structure. FEBS Lett 589:3023–3030. doi:10.1016/j.febslet.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  15. Guelen L, Pagie L, Brasset E et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951. doi:10.1038/nature06947

    Article  CAS  PubMed  Google Scholar 

  16. Németh A, Conesa A, Santoyo-Lopez J et al (2010) Initial genomics of the human nucleolus. PLoS Genet 6:e1000889. doi:10.1371/journal.pgen.1000889

    Article  PubMed  PubMed Central  Google Scholar 

  17. van Koningsbruggen S, Gierlinski M, Schofield P et al (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21:3735–3748. doi:10.1091/mbc.E10-06-0508

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wijchers PJ, Geeven G, Eyres M et al (2015) Characterization and dynamics of pericentromere-associated domains in mice. Genome Res 25:958–969. doi:10.1101/gr.186643.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bai B, Yegnasubramanian S, Wheelan SJ, Laiho M (2014) RNA-Seq of the nucleolus reveals abundant SNORD44-derived small RNAs. PLoS One 9:e107519. doi:10.1371/journal.pone.0107519.s004

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bai B, Liu H, Laiho M (2014) Small RNA expression and deep sequencing analyses of the nucleolus reveal the presence of nucleolus-associated microRNAs. FEBS Open Bio 4:441–449. doi:10.1016/j.fob.2014.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caudron-Herger M, Pankert T, Seiler J et al (2015) Alu element-containing RNAs maintain nucleolar structure and function. EMBO J 34:2758, doi: 10.15252/embj.201591458

    Article  CAS  PubMed  Google Scholar 

  22. Andersen JS, Lam YW, Leung AKL et al (2005) Nucleolar proteome dynamics. Nature 433:77–83. doi:10.1038/nature03207

    Article  CAS  PubMed  Google Scholar 

  23. Moore HM, Bai B, Boisvert F-M et al (2011) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 10:M111.009241. doi:10.1074/mcp.M111.009241

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dillinger S, Garea AV, Deutzmann R, Németh A (2014) Analysis of histone posttranslational modifications from nucleolus-associated chromatin by mass spectrometry. Methods Mol Biol 1094:277–293. doi:10.1007/978-1-62703-706-8_22

    Article  CAS  PubMed  Google Scholar 

  25. Zhang W, Li J, Suzuki K et al (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163. doi:10.1126/science.aaa1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hayashi-Takanaka Y, Yamagata K, Wakayama T et al (2011) Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res 39:6475–6488. doi:10.1093/nar/gkr343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ronneberger O, Baddeley D, Scheipl F et al (2008) Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls. Chromosome Res 16:523–562. doi:10.1007/s10577-008-1236-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG SFB960 program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Dillinger or Attila Németh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dillinger, S., Németh, A. (2016). Quantitative Immunofluorescence Analysis of Nucleolus-Associated Chromatin. In: Németh, A. (eds) The Nucleolus. Methods in Molecular Biology, vol 1455. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3792-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3792-9_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3790-5

  • Online ISBN: 978-1-4939-3792-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics