Skip to main content
Book cover

Cilia pp 97–106Cite as

A FRAP-Based Method for Monitoring Molecular Transport in Ciliary Photoreceptor Cells In Vivo

  • Protocol
  • First Online:
  • 1830 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1454))

Abstract

The outer segment of rod and cone photoreceptor cells represents a highly modified primary sensory cilium. It renews on a daily basis throughout lifetime and effective vectorial transport to the cilium is essential for the maintenance of the photoreceptor cell function. Defects in molecules of transport modules lead to severe retinal ciliopathies. We have recently established a fluorescence recovery after photobleaching (FRAP)-based method to monitor molecular trafficking in living rodent photoreceptor cells. We irreversibly bleach the fluorescence of tagged molecules (e.g. eGFP-Rhodopsin) in photoreceptor cells of native vibratome sections through the retina by high laser intensity. In the laser scanning microscope, the recovery of the fluorescent signal is monitored over time and the kinetics of movements of molecules can be quantitatively ascertained.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Young RW (1967) The renewal of photoreceptor cell outer segments. JCell Biol 33:61–72

    Article  CAS  Google Scholar 

  2. Steinberg RH, Fisher SK, Anderson DH (1980) Disc morphogenesis in vertebrate photoreceptors. JCompNeurol 190:501–518

    CAS  Google Scholar 

  3. Usukura J, Obata S (1995) Morphogenesis of photoreceptor outer segments in retinal development. Prog Retin Eye Res 15:113–125

    Article  Google Scholar 

  4. Kevany BM, Palczewski K (2010) Phagocytosis of retinal rod and cone photoreceptors. Physiology 25(1):8–15. doi:10.1152/physiol.00038.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pearring JN, Salinas RY, Baker SA, Arshavsky VY (2013) Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 36:24–51. doi:10.1016/j.preteyeres.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  6. Wolfrum U, Schmitt A (2000) Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. Cell Motil Cytoskeleton 46(2):95–107. doi:10.1002/1097-0169(200006)46:2<95::AID-CM2>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Deretic D (2014) Molecular complexes that direct rhodopsin transport to primary cilia. Prog Retin Eye Res 38:1–19. doi:10.1016/j.preteyeres.2013.08.004

    Article  PubMed  Google Scholar 

  8. Tian G, Ropelewski P, Nemet I, Lee R, Lodowski KH, Imanishi Y (2014) An unconventional secretory pathway mediates the cilia targeting of peripherin/rds. J Neurosci 34(3):992–1006. doi:10.1523/JNEUROSCI.3437-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trivedi D, Colin E, Louie CM, Williams DS (2012) Live-cell imaging evidence for the ciliary transport of rod photoreceptor opsin by heterotrimeric kinesin-2. J Neurosci 32(31):10587–10593. doi:10.1523/JNEUROSCI.0015-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reits EA, Neefjes JJ (2001) From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol 3(6):E145–147. doi:10.1038/35078615

    Article  CAS  PubMed  Google Scholar 

  11. Chan F, Bradley A, Wensel TG, Wilson JH (2004) Knock-in human rhodopsin-GFP fusions as mouse models for human disease and targets for gene therapy. Proc Natl Acad Sci U S A 101:9109–9114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sung CH, Chuang JZ (2010) The cell biology of vision. J Cell Biol 190(6):953–963. doi:10.1083/jcb.201006020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The present study was supported by the German Research Council (DFG) FOR 2149/WO548-8, EC FP7/2009/241955 (SYSCILIA), the FAUN Foundation, Nurnberg, and the JGU Research Support (Stage 1). We thank Dr. J.H. Wilson, Houston, TX, for kindly providing the hRho-eGFP knock-in mouse line and Dr. Helen May-Simera for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Wolfrum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wunderlich, K.A., Wolfrum, U. (2016). A FRAP-Based Method for Monitoring Molecular Transport in Ciliary Photoreceptor Cells In Vivo. In: Satir, P., Christensen, S. (eds) Cilia. Methods in Molecular Biology, vol 1454. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3789-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3789-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3787-5

  • Online ISBN: 978-1-4939-3789-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics