Skip to main content

Protocols for Gelfoam® Histoculture of Hair-Shaft-Producing Mouse Whisker Follicles Containing Nestin-GFP-Expressing Hair-Follicle-Associated Pluripotent (HAP) Stem Cells for Long Time Periods

  • Protocol
  • First Online:
Multipotent Stem Cells of the Hair Follicle

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1453))

Abstract

Gelfoam®-histocultured whisker follicles from nestin-driven-green fluorescent protein (ND-GFP) mice produced growing pigmented and unpigmented hair shafts. Hair-shaft length increased rapidly by day 4 and continued growing until at least day 12 after which the hair-shaft length was constant. By day 63 in histoculture, the number of ND-GFP hair follicle-associated pluripotent (HAP) stem cells increased significantly and the follicles were intact. Three-dimensional Gelfoam® histoculture of hair follicles can provide a very long-term period for evaluating novel agents to promote hair growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freeman A, Hoffman RM (1986) In vivo-like growth of human tumors in vitro. Proc Natl Acad Sci U S A 83:2694–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoffman RM (2010) Histocultures and their use. In: Encyclopedia of life sciences. John Wiley and Sons, Ltd., Chichester. Published Online. doi:10.1002/9780470015902.a0002573.pub2

    Google Scholar 

  3. Li L, Margolis LB, Paus R, Hoffman RM (1992) Hair shaft elongation, follicle growth, and spontaneous regression in long-term, gelatin sponge-supported histoculture of human scalp skin. Proc Natl Acad Sci U S A 89:8764–8768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li L, Paus R, Slominski A, Hoffman RM (1992) Skin histoculture assay for studying the hair cycle. In Vitro Cell Dev Biol 28A:695–698

    Article  CAS  PubMed  Google Scholar 

  5. Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM (2005) Multipotent nestin-positive, keratin-negative hair-follicle-bulge stem cells can form neurons. Proc Natl Acad Sci U S A 102:5530–5534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yashiro M, Mii S, Aki R, Hamada Y, Arakawa N, Kawahara K et al (2015) From hair to heart: nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells differentiate to beating cardiac muscle cells. Cell Cycle 14:2362–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S et al (2005) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 102:17734–17738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amoh Y, Li L, Katsuoka K, Hoffman RM (2008) Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle 7:1865–1869

    Article  CAS  PubMed  Google Scholar 

  9. Liu F, Uchugonova A, Kimura H, Zhang C, Zhao M, Zhang L et al (2011) The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla. Cell Cycle 10:830–839

    Article  CAS  PubMed  Google Scholar 

  10. Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman RM (2003) Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci USA 100:9958–9961

    Google Scholar 

  11. Mii S, Duong J, Tome Y, Uchugonova A, Liu F, Amoh Y et al (2013) The role of hair follicle nestin-expressing stem cells during whisker sensory-nerve growth in long-term 3D culture. J Cell Biochem 114:1674–1684

    Article  CAS  PubMed  Google Scholar 

  12. Duong J, Mii S, Uchugonova A, Liu F, Moossa AR, Hoffman RM (2012) Real-time confocal imaging of trafficking of nestin-expressing multipotent stem cells in mouse whiskers in long-term 3-D histoculture. In Vitro Cell Dev Biol Anim 48:301–305

    Article  CAS  PubMed  Google Scholar 

  13. Cao W, Li L, Mii S, Amoh Y, Liu F, Hoffman RM (2015). Extensive hair shaft elongation by isolated mouse whisker follicles in very long-term Gelfoam® histoculture. PLOS ONE 10:e0138005

    Google Scholar 

  14. Yamauchi K, Yang M, Jiang P, Xu M, Yamamoto N, Tsuchiya H, et al. (2006) Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification wholemouse imaging system. Cancer Res 66:4208–4214

    Google Scholar 

  15. Jo SJ, Choi S-J, Yoon S-Y, Lee JY, Park W-S, Park P-J et al (2013) Valproic acid promotes human hair growth in in vitro culture model. J Dermatol Sci 72:16–24

    Article  CAS  PubMed  Google Scholar 

  16. Philpott MP, Green MR, Kealey T (1990) Human hair growth in vitro. J Cell Sci 97(Pt 3):463–471

    CAS  PubMed  Google Scholar 

  17. Cao W, Li L, Mii S, Amoh Y, Liu F, Hoffman RM (2015) Long-term extensive ectopic hair growth on the spinal cord of mice from transplanted whisker follicles. PLoS One 10:e0133475

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This studies described in the present chapter were supported by the National Institute of Neurological Disorders and Stroke grant NS086217.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hoffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cao, W., Liu, F., Amoh, Y., Hoffman, R.M. (2016). Protocols for Gelfoam® Histoculture of Hair-Shaft-Producing Mouse Whisker Follicles Containing Nestin-GFP-Expressing Hair-Follicle-Associated Pluripotent (HAP) Stem Cells for Long Time Periods. In: Hoffman, R. (eds) Multipotent Stem Cells of the Hair Follicle. Methods in Molecular Biology, vol 1453. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3786-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3786-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3784-4

  • Online ISBN: 978-1-4939-3786-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics