Skip to main content

Isolation and Fluorescence-Activated Cell Sorting of Mouse Keratinocytes Expressing β-Galactosidase

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1453))

Abstract

During the past decade, the rapid development of new transgenic and knock-in mouse models has propelled epidermal stem-cell research into “fast-forward mode”. It has become possible to identify and visualize defined cell populations during normal tissue maintenance, and to follow their progeny during the processes of homeostasis, wound repair, and tumorigenesis. Moreover, these cells can be isolated using specific labels, and characterized in detail using an array of molecular and cell biology approaches. The bacterial enzyme, β-galactosidase (β-gal), the product of the LacZ gene, is one of the most commonly used in vivo cell labels in genetically-engineered mice. The protocol described in this chapter provides a guideline for the isolation of viable murine epidermal cells expressing β-gal, which can then be subjected to further characterization in vivo or in vitro.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mansour SL, Thomas KR, Deng CX et al (1990) Introduction of a lacZ reporter gene into the mouse int-2 locus by homologous recombination. Proc Natl Acad Sci U S A 87:7688–7692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morrey JD, Bourn SM, Bunch TD et al (1991) In vivo activation of human immunodeficiency virus type 1 long terminal repeat by UV type A (UV-A) light plus psoralen and UV-B light in the skin of transgenic mice. J Virol 65:5045–5051

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ikawa M, Kominami K, Yoshimura Y et al (1995) Green fluorescent protein as a marker in transgenic mice. Dev Growth Differ 37:455–459

    Article  CAS  Google Scholar 

  4. Snippert HJ, van der Flier LG, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144

    Article  CAS  PubMed  Google Scholar 

  5. Bickenbach JR, Chism E (1998) Selection and extended growth of murine epidermal stem cells in culture. Exp Cell Res 244:184–195

    Article  CAS  PubMed  Google Scholar 

  6. Trempus CS, Morris RJ, Bortner CD et al (2003) Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 120:501–511

    CAS  PubMed  Google Scholar 

  7. Tani H, Morris RJ, Kaur P (2000) Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci U S A 97:10960–10965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jensen KB, Collins CA, Nascimento E et al (2009) Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4:427–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nijhof JG, Braun KM, Giangreco A et al (2006) The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133:3027–3037

    Article  CAS  PubMed  Google Scholar 

  10. Tumbar T, Guasch G, Greco V et al (2004) Defining the epithelial stem cell niche in skin. Science 303:359–363

    Article  CAS  PubMed  Google Scholar 

  11. Takeda N, Jain R, Leboeuf MR et al (2013) Hopx expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells. Development 140:1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Snippert HJ, Haegebarth A, Kasper M et al (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327:1385–1389

    Article  CAS  PubMed  Google Scholar 

  13. Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  CAS  PubMed  Google Scholar 

  14. Jaks V, Barker N, Kasper M et al (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40:1291–1299

    Article  CAS  PubMed  Google Scholar 

  15. Wu WY, Morris RJ (2005) Method for the harvest and assay of in vitro clonogenic keratinocytes stem cells from mice. Methods Mol Biol 289:79–86

    PubMed  Google Scholar 

  16. Philpott MP, Green MR, Kealey T (1992) Rat hair follicle growth in vitro. Br J Dermatol 127:600–607

    Article  CAS  PubMed  Google Scholar 

  17. Rendl M, Lewis L, Fuchs E (2005) Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol 3:e331

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rogers G, Martinet N, Steinert P et al (1987) Cultivation of murine hair follicles as organoids in a collagen matrix. J Invest Dermatol 89:369–379

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

V.J. is supported by an EMBO Installation Grant and two grants, nos. ETF8932 and PUT4 from the Estonian Research Council. M.K. is supported by grants from the Swedish Research Council, the Swedish Cancer Society, the Karolinska Institutet, the Harald and Greta Jeanssons Foundation, the Swedish Foundation for Strategic Research, the Center for Innovative Medicine, and the Ragnar Söderberg Foundation. R.T. is supported by grants from the Swedish Research Council and the Swedish Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viljar Jaks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kasper, M., Toftgård, R., Jaks, V. (2016). Isolation and Fluorescence-Activated Cell Sorting of Mouse Keratinocytes Expressing β-Galactosidase. In: Hoffman, R. (eds) Multipotent Stem Cells of the Hair Follicle. Methods in Molecular Biology, vol 1453. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3786-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3786-8_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3784-4

  • Online ISBN: 978-1-4939-3786-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics