Skip to main content

The Next-Generation PCR-Based Quantification Method for Ambient Waters: Digital PCR

  • Protocol
  • First Online:
Marine Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1452))

Abstract

Real-time quantitative PCR (qPCR) is increasingly being used for ambient water monitoring, but development of digital polymerase chain reaction (digital PCR) has the potential to further advance the use of molecular techniques in such applications. Digital PCR refines qPCR by partitioning the sample into thousands to millions of miniature reactions that are examined individually for binary endpoint results, with DNA density calculated from the fraction of positives using Poisson statistics. This direct quantification removes the need for standard curves, eliminating the labor and materials associated with creating and running standards with each batch, and removing biases associated with standard variability and mismatching amplification efficiency between standards and samples. Confining reactions and binary endpoint measurements to small partitions also leads to other performance advantages, including reduced susceptibility to inhibition, increased repeatability and reproducibility, and increased capacity to measure multiple targets in one analysis. As such, digital PCR is well suited for ambient water monitoring applications and is particularly advantageous as molecular methods move toward autonomous field application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boehm AB, Ashbolt NJ, Colford JM, Dunbar LE, Fleming LE, Gold MA, Hansel JA, Hunter PR, Ichida AM, McGee CD, Soller JA, Weisberg SB (2009) A sea change ahead for recreational water quality criteria. J Water Health 7(1):9–20. doi:10.2166/wh.2009.122

    Article  PubMed  Google Scholar 

  2. Bourlat SJ, Borja A, Gilbert J, Taylor MI, Davies N, Weisberg SB, Griffith JF, Lettieri T, Field D, Benzie J, Glockner FO, Rodriguez-Ezpeleta N, Faith DP, Bean TP, Obst M (2013) Genomics in marine monitoring: new opportunities for assessing marine health status. Mar Pollut Bull 74(1):19–31. doi:10.1016/j.marpolbul.2013.05.042

    Article  CAS  PubMed  Google Scholar 

  3. Thomsen PF, Willerslev E (2015) Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18. doi:10.1016/j.biocon.2014.11.019

    Article  Google Scholar 

  4. Converse RR, Griffith JF, Noble RT, Haugland RA, Schiff KC, Weisberg SB (2012) Correlation between quantitative polymerase chain reaction and culture-based methods for measuring Enterococcus over various temporal scales and three California marine beaches. Appl Environ Microbiol 78(4):1237–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raith MR, Ebentier DL, Cao Y, Griffith JF, Weisberg SB (2013) Factors affecting the relationship between quantitative polymerase chain reaction (qPCR) and culture-based enumeration of Enterococcus in environmental waters. J Appl Microbiol. doi:10.1111/jam.12383

    PubMed  Google Scholar 

  6. Griffith JF, Weisberg SB (2011) Challenges in implementing new technology for beach water quality monitoring: lessons from a California demonstration project. Mar Techol Soc J 45:65–73

    Article  Google Scholar 

  7. Boehm AB, Van De Werfhorst LC, Griffith JF, Holden PA, Jay JA, Shanks OC, Wang D, Weisberg SB (2013) Performance of forty-one microbial source tracking methods: a twenty-seven lab evaluation study. Water Res 47(18):6812–6828

    Article  CAS  PubMed  Google Scholar 

  8. Nathan LM, Simmons M, Wegleitner BJ, Jerde CL, Mahon AR (2014) Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms. Environ Sci Technol 48(21):12800–12806. doi:10.1021/es5034052

    Article  CAS  PubMed  Google Scholar 

  9. Zhang W, Lou I, Ung WK, Kong Y, Mok KM (2014) Application of PCR and real-time PCR for monitoring cyanobacteria, Microcystis spp. and Cylindrospermopsis raciborskii in Macau freshwater reservoir. Front Earth Sci 8(2):291–301. doi:10.1007/s11707-013-0409-4

    Article  CAS  Google Scholar 

  10. Zhang F, Lee J, Liang S, Shum CK (2015) Cyanobacteria blooms and non-alcoholic liver disease: evidence from a county level ecological study in the United States. Environ Health 14:41. doi:10.1186/s12940-015-0026-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baker M (2011) qPCR: quicker and easier but don't be sloppy. Nat Methods 8(3):207–212. doi:10.1038/nmeth0311-207

    Article  CAS  Google Scholar 

  12. Doi H, Uchii K, Takahara T, Matsuhashi S, Yamanaka H, Minamoto T (2015) Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS One 10(3), e0122763. doi:10.1371/journal.pone.0122763

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cao Y, Raith MR, Griffith JF (2015) Droplet digital PCR for simultaneous quantification of general and human-associated fecal indicators for water quality assessment. Water Res 70:337–349. doi:10.1016/j.watres.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  14. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10(10):1003–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marx V (2015) PCR heads into the field. Nat Methods 12(5):393–397. doi:10.1038/nmeth.3369

    Article  CAS  Google Scholar 

  16. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McDermott GP, Do D, Litterst CM, Maar D, Hindson CM, Steenblock ER, Legler TC, Jouvenot Y, Marrs SH, Bemis A, Shah P, Wong J, Wang S, Sally D, Javier L, Dinio T, Han C, Brackbill TP, Hodges SP, Ling Y, Klitgord N, Carman GJ, Berman JR, Koehler RT, Hiddessen AL, Walse P, Bousse L, Tzonev S, Hefner E, Hindson BJ, Cauly TH III, Hamby K, Patel VP, Regan JF, Wyatt PW, Karlin-Neumann GA, Stumbo DP, Lowe AJ (2013) Multiplexed target detection using DNA-binding dye chemistry in droplet digital PCR. Anal Chem 85(23):11619–11627. doi:10.1021/ac403061n

    Article  CAS  PubMed  Google Scholar 

  18. Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci 96:9236–9241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baker M (2012) Digital PCR hits its stride. Nat Methods 9(6):541–544

    Article  CAS  Google Scholar 

  20. Cao Y, Sivaganesan M, Kinzelman J, Blackwood AD, Noble RT, Haugland RA, Griffith JF, Weisberg SB (2013) Effect of platform, reference material, and quantification model on enumeration of Enterococcus by quantitative PCR methods. Water Res 47(1):233–241. doi:10.1016/j.watres.2012.09.056

    Article  PubMed  Google Scholar 

  21. Sivaganesan M, Siefring S, Varma M, Haugland RA (2011) MPN estimation of qPCR target sequence recoveries from whole cell calibrator samples. J Microbiol Methods 87(3):343–349. doi:10.1016/j.mimet.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  22. Shanks OC, Sivaganesan M, Peed L, Kelty CA, Blackwood AD, Greene MR, Noble RT, Bushon RN, Stelzer EA, Kinzelman J, Anan’eva T, Sinigalliano C, Wanless D, Griffith J, Cao Y, Weisberg S, Harwood VJ, Staley C, Oshima KH, Varma M, Haugland RA (2012) Inter-laboratory general fecal indicator quantitative real-time PCR methods comparison study. Environ Sci Technol 46(2):945–953

    Article  CAS  PubMed  Google Scholar 

  23. Cao Y, Griffith JF, Dorevitch S, Weisberg SB (2012) Effectiveness of qPCR permutations, internal controls and dilution as means for minimizing the impact of inhibition while measuring Enterococcus in environmental waters. J Appl Microbiol 113(1):66–75

    Article  CAS  PubMed  Google Scholar 

  24. Whale AS, Cowen S, Foy CA, Huggett JF (2013) Methods for applying accurate digital PCR analysis on low copy DNA samples. PLoS One 8(3), e58177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. U.S. EPA (2010) Method B. Bacteroidales in water by TaqMan® quantitative polymerase chain reaction (qPCR) assay. EPA-822-R-10-003. Office of Water, Washington, DC

    Google Scholar 

  26. Chern EC, Siefring S, Paar J, Doolittle M, Haugland RA (2011) Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes. Lett Appl Microbiol 52(3):298–306. doi:10.1111/j.1472-765X.2010.03001.x

    Article  CAS  PubMed  Google Scholar 

  27. Green HC, Haugland RA, Varma M, Millen HT, Borchardt MA, Field KG, Walters WA, Knight R, Sivaganesan M, Kelty CA, Shanks OC (2014) Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples. Appl Environ Microbiol 80(10):3086–3094. doi:10.1128/AEM.04137-13

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shanks OC, Atikovic E, Blackwood AD, Lu J, Noble RT, Domingo JS, Seifring S, Sivaganesan M, Haugland RA (2008) Quantitative PCR for detection and enumeration of genetic markers of bovine fecal pollution. Appl Environ Microbiol 74(3):745–752. doi:10.1128/aem.01843-07

    Article  CAS  PubMed  Google Scholar 

  29. Lee C, Marion JW, Lee J (2013) Development and application of a quantitative PCR assay targeting Catellicoccus marimammalium for assessing gull-associated fecal contamination at Lake Erie beaches. Sci Total Environ 454–455:1–8. doi:10.1016/j.scitotenv.2013.03.003

    Article  PubMed  Google Scholar 

  30. Lund M, Nordentoft S, Pedersen K, Madsen M (2004) Detection of Campylobacter spp. in chicken fecal samples by real-time PCR. J Clin Microbiol 42(11):5125–5132. doi:10.1128/JCM.42.11.5125-5132.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao Y, Raith MR, Griffith JF (2016) A duplex digital PCR assay for simultaneous quantification of the Enterococcus spp. and the human fecal-associated HF183 marker in waters. J Vis Exp 109, e53611

    Google Scholar 

  32. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. doi:10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  33. Whale AS, Hugget JF, Cowen S, Speirs V, Shaw J, Ellison S, Foy CA, Scott DJ (2012) Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acid Res 40(11):e82–e89. doi:10.1093/nar/gks1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanders R, Huggett JF, Bushell CA, Cowen S, Scott DJ, Foy CA (2011) Evaluation of digital PCR for absolute DNA quantification. Anal Chem 83(17):6474–6484

    Article  CAS  PubMed  Google Scholar 

  35. Morisset D, Štebih D, Milavec M, Gruden K, Žel J (2013) Quantitative analysis of food and feed samples with droplet digital PCR. PLoS One 8(5):62583, 62510.61371/journal.pone.0062583

    Article  Google Scholar 

  36. Yang R, Paparini A, Monis P, Ryan U (2014) Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int J Parasitol 44(14):1105–1113. doi:10.1016/j.ijpara.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  37. Norton SE, Lechner JM, Williams T, Fernando MR (2013) A stabilizing reagent prevents cell-free DNA contamination by cellular DNA in plasma during blood sample storage and shipping as determined by digital PCR. Clin Biochem 46(15):1561–1565. doi:10.1016/j.clinbiochem.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  38. Ebentier DL, Hanley KT, Cao Y, Badgley B, Boehm A, Ervin J, Goodwin KD, Gourmelon M, Griffith J, Holden P, Kelty CA, Lozach S, McGee C, Peed L, Raith M, Sadowsky MJ, Scott E, Santodomingo J, Sinigalliano C, Shanks OC, Werfhorst LCVD, Wang D, Wuertz S, Jay J (2013) Evaluation of the repeatability and reproducibility of a suite of PCR-based microbial source tracking methods. Water Res 47(18):6839–6848

    Article  CAS  PubMed  Google Scholar 

  39. Kim TG, Jeong SY, Cho KS (2014) Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil. Appl Microbiol Biotechnol 98(13):6105–6113. doi:10.1007/s00253-014-5794-4

    Article  CAS  PubMed  Google Scholar 

  40. Doi H, Takahara T, Minamoto T, Matsuhashi S, Uchii K, Yamanaka H (2015) Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species. Environ Sci Technol 49(9):5601–5608. doi:10.1021/acs.est.5b00253

    Article  CAS  PubMed  Google Scholar 

  41. Dreo T, Pirc M, Ramsak Z, Pavsic J, Milavec M, Zel J, Gruden K (2014) Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot. Anal Bioanal Chem 406(26):6513–6528. doi:10.1007/s00216-014-8084-1

    Article  CAS  PubMed  Google Scholar 

  42. Hayden RT, Gu Z, Ingersoll J, Abdul-Ali D, Shi L, Pounds S, Caliendo AM (2013) Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J Clin Microbiol 51(2):540–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoshino T, Inagaki F (2012) Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst Appl Microbiol 35(6):390–395. doi:10.1016/j.syapm.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  44. Rački N, Morisset D, Gutierrez-Aguirre I, Ravnikar M (2013) One-step RT-droplet digital PCR: a breakthrough in the quantification of waterborne RNA viruses. Anal Bioanal Chem. doi:10.1007/s00216-013-7476-y

    PubMed  PubMed Central  Google Scholar 

  45. Nixon G, Garson JA, Grant P, Nastouli E, Foy CA, Huggett JF (2014) Comparative study of sensitivity, linearity, and resistance to inhibition of digital and nondigital polymerase chain reaction and loop mediated isothermal amplification assays for quantification of human cytomegalovirus. Anal Chem 86(9):4387–4394. doi:10.1021/ac500208w

    Article  CAS  PubMed  Google Scholar 

  46. Racki N, Dreo T, Gutierrez-Aguirre I, Blejec A, Ravnikar M (2014) Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods 10(1):42. doi:10.1186/s13007-014-0042-6

    Article  PubMed  PubMed Central  Google Scholar 

  47. Opel KL, Chung D, McCord BR (2010) A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci 55(1):25–33

    Article  CAS  PubMed  Google Scholar 

  48. Abu Al-Soud W, Radstrom P (1998) Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples. Appl Environ Microbiol 64(10):3748–3753

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Al-Tebrineh J, Pearson LA, Yasar SA, Neilan BA (2012) A multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance. Harmful Algae 15:19–25. doi:10.1016/j.hal.2011.11.001

    Article  CAS  Google Scholar 

  50. Hoorfar J, Malorny B, Abdulmawjood A, Cook N, Wagner M, Fach P (2004) Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol 42(5):1863–1868. doi:10.1128/jcm.42.5.1863-1868.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, Hellemans J, Kubista M, Mueller RD, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT, Bustin SA (2013) The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem 59(6):892–902

    Article  CAS  PubMed  Google Scholar 

  52. Kelley K, Cosman A, Belgrader P, Chapman B, Sullivan DC (2013) Detection of methicillin-resistant Staphylococcus aureus by a duplex droplet digital PCR assay. J Clin Microbiol 51(7):2033–2039. doi:10.1128/JCM.00196-13

    Article  PubMed  PubMed Central  Google Scholar 

  53. Miotke L, Lau BT, Rumma RT, Ji HP (2014) High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Anal Chem 86(5):2618–2624. doi:10.1021/ac403843j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hauser L, Seeb JE (2008) Advances in molecular technology and their impact on fisheries genetics. Fish Fish 9(4):473–486. doi:10.1111/j.1467-2979.2008.00306.x

    Article  Google Scholar 

  55. Bhat S, McLaughlin JL, Emslie KR (2011) Effect of sustained elevated temperature prior to amplification on template copy number estimation using digital polymerase chain reaction. Analyst 136(4):724–732. doi:10.1039/c0an00484g

    Article  CAS  PubMed  Google Scholar 

  56. Jothikumar N, Cromeans TL, Hill VR, Lu X, Sobsey MD, Erdman DD (2005) Quantitative real-time PCR assays for detection of human adenoviruses and identification of serotypes 40 and 41. Appl Environ Microbiol 71(6):3131–3136. doi:10.1128/AEM.71.6.3131-3136.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goldberg CS, Sepulveda A, Ray A, Baumgardt J, Waits LP (2013) Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshw Sci 32(3):792–800. doi:10.1899/13-046.1

    Article  Google Scholar 

  58. Sagarin R, Carlsson J, Duval M, Freshwater W, Godfrey MH, Litaker W, Muñoz R, Noble R, Schultz T, Wynne B (2009) Bringing molecular tools into environmental resource management: untangling the molecules to policy pathway. PLoS Biol 7(3), e1000069. doi:10.1371/journal.pbio.1000069

    Article  PubMed Central  Google Scholar 

  59. Scholin CA (2010) What are “ecogenomic sensors?” A review and thoughts for the future. Ocean Sci 6:51–60

    Article  CAS  Google Scholar 

  60. Yamahara KM, Demir-Hilton E, Preston CM, Marin R 3rd, Pargett D, Roman B, Jensen S, Birch JM, Boehm AB, Scholin CA (2015) Simultaneous monitoring of faecal indicators and harmful algae using an in-situ autonomous sensor. Lett Appl Microbiol 61(2):130–138. doi:10.1111/lam.12432

    Article  CAS  PubMed  Google Scholar 

  61. Korostynska O, Mason A, Al-Shamma’a AI (2013) Monitoring pollutants in wastewater: traditional lab based versus modern real-time approaches. In: Mukhopadhyay SC, Mason A (eds) Smart sensors for real-time water quality monitoring, vol 4. Smart sensors, measurement and instrumentation, vol 4. Springer, Berlin, pp 1–24. doi:10.1007/978-3-642-37006-9_1

    Chapter  Google Scholar 

  62. U.S. EPA (2012) Recreational water quality criteria. EPA 820-F-12-058. Office of Water, Washington, DC

    Google Scholar 

Download references

Acknowledgment

The authors wish to thank Meredith Raith and Lucy Mao for laboratory assistance in validating the ddPCR assays presented in Table 1 and Jingrang Lu and Josh Steele for discussion in selecting primer/probe for the Campylobacter and Salmonella ddPCR assays, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Weisberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cao, Y., Griffith, J.F., Weisberg, S.B. (2016). The Next-Generation PCR-Based Quantification Method for Ambient Waters: Digital PCR. In: Bourlat, S. (eds) Marine Genomics. Methods in Molecular Biology, vol 1452. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3774-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3774-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3772-1

  • Online ISBN: 978-1-4939-3774-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics