Skip to main content

DNA Barcoding Marine Biodiversity: Steps from Mere Cataloguing to Giving Reasons for Biological Differences

  • Protocol
  • First Online:
Book cover Marine Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1452))

Abstract

DNA barcoding has become a useful tool in many contexts and has opened up a completely new avenue for taxonomy. DNA barcoding has its widest application in biodiversity and ecological research to detect and describe diversity whenever morphological discrimination is difficult or impossible (e.g., in the case of species lacking diagnostic characters, early life stages, or cryptic species). In this chapter, we outline the utility of including physiological parameters as part of species description in publicly available databases that catalog taxonomic information resulting from barcoding projects. Cryptic species or different life stages of a species often differ in their physiological traits. Thus, if physiological aspects were included in species definitions, the presently cryptic species could be distinguished. We furthermore give suggestions for physiological information that should be included in a species description and describe potential applications of DNA barcoding for research with physiological components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kress WJ, Erickson DL (2012) DNA barcodes: methods and protocols. Methods Mol Biol 858:1–470

    Google Scholar 

  2. Evans N, Paulay G (2012) DNA barcoding methods for invertebrates. Methods Mol Biol 858:47–77

    Article  CAS  PubMed  Google Scholar 

  3. Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine metazoa. Ann Rev Mar Sci 3:471–508

    Article  PubMed  Google Scholar 

  4. Hebert P, Cywinska A, Ball S, de Vaard J (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–332

    Article  CAS  Google Scholar 

  5. Nikinmaa M (2014) What is biodiversity? Stepping forward from barcoding to understanding biological differences. Mar Genomics 17:65–67

    Article  PubMed  Google Scholar 

  6. Pentinsaari M, Mutanen M, Kaila L (2014) Cryptic diversity and signs of mitochondrial introgression in the Agrilus viridis species complex (Coleoptera: Buprestidae). Eur J Entomol 111:475–486

    Google Scholar 

  7. Gamenick I, Abbiati M, Giere O (1998) Field distribution and sulphide tolerance of Capitella capitata (Annelida : Polychaeta) around shallow wafer hydrothermal vents off Milos (Aegean Sea). A new sibling species? Mar Biol 130:447–453

    Article  CAS  Google Scholar 

  8. Kruse I, Strasser M, Thiermann F (2004) The role of ecological divergence in speciation between intertidal and subtidal Scoloplos armiger (Polychaeta, Orbiniidae). J Sea Res 51:53–62

    Article  Google Scholar 

  9. Nygren A (2014) Cryptic polychaete diversity: a review. Zool Scripta 43:172–183

    Article  Google Scholar 

  10. Zettler ML, Proffitt CE, Darr A, Degraer S, Devriese L, Greathead C, Kotta J, Magni P, Martin G, Reiss H, Speybroeck J, Tagliapietra D, Van Hoey G, Ysebaert T (2013) On the myths of indicator species: Issues and further consideration in the use of static concepts for ecological applications. PLoS One 8, e78219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (www.barcodinglife.org). Mol Ecol Notes 7:355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boero F, Bernardi G (2014) Phenotypic vs genotypic approaches to biodiversity, from conflict to alliance. Mar Genomics 17:63–64

    Article  PubMed  Google Scholar 

  13. Ostbye K, Amundsen PA, Bernatchez L, Klemetsen A, Knudsen R, Kristoffersen R, Naesje TF, Hindar K (2006) Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times. Mol Ecol 15:3983–4001

    Google Scholar 

  14. Siwertsson A, Knudsen R, Praebel K, Adams CE, Newton J, Amundsen PA (2013) Discrete foraging niches promote ecological, phenotypic, and genetic divergence in sympatric whitefish (Coregonus lavaretus). Evol Ecol 27:547–564

    Google Scholar 

  15. Praebel K, Knudsen R, Siwertsson A, Karhunen M, Kahilainen KK, Ovaskainen O, Ostbye K, Peruzzi S, Fevolden SE, Amundsen PA (2013) Ecological speciation in postglacial European whitefish: rapid adaptive radiations into the littoral, pelagic, and profundal lake habitats. Ecol Evol 3:4970–4986

    Article  PubMed  PubMed Central  Google Scholar 

  16. Miglietta MP, Cunningham CW (2012) Evolution of life cycle, colony morphology, and host specificity in the family Hydractiniidae (Hydrozoa, Cnidaria). Evolution 66:3876–3901

    Article  PubMed  Google Scholar 

  17. Kornfield I, Smith PF (2000) African cichlid fishes: model systems for evolutionary biology. Annu Rev Ecol Syst 31:163–196

    Article  Google Scholar 

  18. Bernardi G (2013) Speciation in fishes. Mol Ecol 22:5487–5502

    Article  PubMed  Google Scholar 

  19. Stamatoyannopoulos G, Bellingham AJ, Lenfant C, Finch CA (1971) Abnormal hemoglobins with high and low oxygen affinity. Annu Rev Med 22:221–234

    Article  CAS  PubMed  Google Scholar 

  20. Bennett AF (1987) Interindividual variability:an underutilized resource. In: Feder ME, Bennett AF, Burggren WW, Huey RB (eds) New directions in ecological physiology. Cambridge University Press, Cambridge, pp 147–169

    Google Scholar 

  21. Nikinmaa M, Waser W (2007) Molecular and cellular studies in evolutionary physiology of natural vertebrate populations: influences of individual variation and genetic components on sampling and measurements. J Exp Biol 210:1847–1857

    Article  CAS  PubMed  Google Scholar 

  22. Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23:167–172

    Article  CAS  PubMed  Google Scholar 

  23. Kruck NC, Tibbetts IR, Ward RD, Johnson JW, Loh WKW, Ovenden JR (2013) Multi-gene barcoding to discriminate sibling species within a morphologically difficult fish genus (Sillago). Fish Res 143:39–46

    Article  Google Scholar 

  24. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6, e19254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oleksiak MF, Roach JL, Crawford DL (2005) Natural variation in cardiac metabolism and gene expression in Fundulus heteroclitus. Nat Genet 37:67–72

    Google Scholar 

  26. Nikinmaa M, McCairns RJS, Nikinmaa MW, Vuori KA, Kanerva M, Leinonen T, Primmer CR, Merila J, Leder EH (2013) Transcription and redox enzyme activities: comparison of equilibrium and disequilibrium levels in the three-spined stickleback. Proc R Soc B 280:20122974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nikinmaa M, Rytkonen KT (2011) Functional genomics in aquatic toxicology—do not forget the function. Aquat Toxicol 105(Suppl):16–24

    Article  CAS  PubMed  Google Scholar 

  28. Varo I, Redon S, Garcia-Roger EM, Amat F, Guinot D, Serrano R, Navarro JC (2015) Aquatic pollution may favor the success of the invasive species A. franciscana. Aquat Toxicol 161:208–220

    Article  CAS  PubMed  Google Scholar 

  29. Bastrop R, Jurss K, Sturmbauer C (1998) Cryptic species in a marine polychaete and their independent introduction from North America to Europe. Mol Biol Evol 15:97–103

    Article  CAS  PubMed  Google Scholar 

  30. Bick A, Burckhardt R (1989) First record of Marenzelleria viridis (Polychaeta, Spionida) in the Baltic Sea with a key to the Spiondae of the Baltic Sea. Mitt Zool Mus Berlin 65:237–247

    Google Scholar 

  31. Bick A (2005) A new Spionidae (Polychaeta) from North Carolina, and a redescription of Marenzelleria wireni Augener, 1913, from Spitsbergen, with a key for all species of Marenzelleria. Helgoland Mar Res 59:265–272

    Article  Google Scholar 

  32. Bastrop R, Blank M (2006) Multiple invasions – a polychaete genus enters the Baltic Sea. Biol Inv 8:1195–1200

    Article  Google Scholar 

  33. Jurss K, Rohner M, Bastrop R (1999) Enzyme activities and allozyme polymorphism in two genetic types (or sibling species) of the genus Marenzelleria (Polychaeta : Spionidae) in Europe. Mar Biol 135:489–496

    Article  CAS  Google Scholar 

  34. Blank M, Bastrop R, Rohner M, Jurss K (2004) Effect of salinity on spatial distribution and cell volume regulation in two sibling species of Marenzelleria (Polychaeta: Spionidae). Mar Ecol Prog Ser 271:193–205

    Article  Google Scholar 

  35. Blank M, Bastrop R, Jurss K (2006) Stress protein response in two sibling species of Marenzelleria (Polychaeta : Spionidae): is there an influence of acclimation salinity? Comp Biochem Physiol B 144:451–462

    Article  CAS  PubMed  Google Scholar 

  36. Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    Article  PubMed  Google Scholar 

  37. Woodin SA, Hilbish TJ, Helmuth B, Jones SJ, Wethey DS (2013) Climate change, species distribution models, and physiological performance metrics: predicting when biogeographic models are likely to fail. Ecol Evol 3:3334–3346

    PubMed  PubMed Central  Google Scholar 

  38. Eliason EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, Gale MK, Patterson DA, Hinch SG, Farrell AP (2011) Differences in thermal tolerance among sockeye salmon populations. Science 332:109–112

    Article  CAS  PubMed  Google Scholar 

  39. Portner HO, Farrell AP (2008) Ecology. Physiology and climate change. Science 322:690–692

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikko Nikinmaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nikinmaa, M., Götting, M. (2016). DNA Barcoding Marine Biodiversity: Steps from Mere Cataloguing to Giving Reasons for Biological Differences. In: Bourlat, S. (eds) Marine Genomics. Methods in Molecular Biology, vol 1452. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3774-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3774-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3772-1

  • Online ISBN: 978-1-4939-3774-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics