Zebrafish pp 121-142 | Cite as

Zebrafish as a Model for the Study of Solid Malignancies

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1451)

Abstract

Zebrafish cancer models have provided critical insight into understanding the link between aberrant developmental pathways and tumorigenesis. The unique strengths of zebrafish as compared to other vertebrate model systems include the combination of fecundity, readily available and efficient transgenesis techniques, transparency that facilitates in vivo cell lineage tracing, and amenability for high-throughput applications. In addition to early embryo readouts, zebrafish can develop tumors at ages ranging from 2 weeks old to adulthood. Tumorigenesis is driven by genetically introducing oncogenes using selected promoter/tissue-specific expression, with either mosaic expression or with the generation of a stable transgenic line. Here, we detail a research pipeline to facilitate the study of human oncogenes in zebrafish systems. The goals of this approach are to identify conserved developmental pathways that may be critical for tumor development and to create platforms for testing novel therapies.

Key words

Transgenesis Functional genomics Solid malignancies Histopathology Gateway cloning Tol2 Zebrafish tumor model 

Notes

Acknowledgments

GCK is supported by a Cancer Prevention and Research Institute of Texas postdoctoral fellowship through the UTSW Cancer Intervention and Prevention Discoveries training program, a QuadW-American Association for Cancer Research Fellowship for Clinical/Translational Sarcoma Research, and a Young Investigator Grant from Alex’s Lemonade Stand Foundation. Supported by grants R01CA135731 from the NIH and RP120685 from the Cancer Prevention and Research Institute of Texas (to JFA). JFA is supported by the Nearburg Family Professorship in Pediatric Oncology Research.

References

  1. 1.
    Smolowitz R, Hanley J, Richmond H (2002) A three-year retrospective study of abdominal tumors in zebrafish maintained in an aquatic laboratory animal facility. Biol Bull 203(2):265–266CrossRefPubMedGoogle Scholar
  2. 2.
    Kent ML, Spitsbergen JM, Matthews JM, Fournie JW, Murray KN, Westerfield M Diseases of zebrafish in research facilities. In ZIRC Health Services zebrafish disease manual 2012. http://zebrafish.org/health/diseaseManual.php
  3. 3.
    Stanton MF (1965) Diethylnitrosamine-induced hepatic degeneration and neoplasia in the aquarium fish Brachydanio Rerio. J Natl Cancer Inst 34:117–130PubMedGoogle Scholar
  4. 4.
    Pliss GB, Khudoley VV (1975) Tumor induction by carcinogenic agents in aquarium fish. J Natl Cancer Inst 55(1):129–136PubMedGoogle Scholar
  5. 5.
    Feitsma H, Cuppen E (2008) Zebrafish as a cancer model. Mol Cancer Res 6(5):685–694CrossRefPubMedGoogle Scholar
  6. 6.
    Berghmans S et al (2005) tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A 102(2):407–412CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Langenau DM et al (2003) Myc-induced T cell leukemia in transgenic zebrafish. Science 299(5608):887–890CrossRefPubMedGoogle Scholar
  8. 8.
    Langenau DM et al (2005) Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 102(17):6068–6073CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sabaawy HE et al (2006) TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 103(41):15166–15171CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhuravleva J et al (2008) MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish. Br J Haematol 143(3):378–382CrossRefPubMedGoogle Scholar
  11. 11.
    Yang HW et al (2004) Targeted expression of human MYCN selectively causes pancreatic neuroendocrine tumors in transgenic zebrafish. Cancer Res 64(20):7256–7262CrossRefPubMedGoogle Scholar
  12. 12.
    Santoriello C et al (2010) Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PLoS One 5(12):e15170CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Patton EE et al (2005) BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15(3):249–254CrossRefPubMedGoogle Scholar
  14. 14.
    Dovey M, White RM, Zon LI (2009) Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish. Zebrafish 6(4):397–404CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Langenau DM et al (2007) Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 21(11):1382–1395CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Leacock SW et al (2012) A zebrafish transgenic model of Ewing’s sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis. Dis Model Mech 5(1):95–106CrossRefPubMedGoogle Scholar
  17. 17.
    Gutierrez A et al (2011) Aberrant AKT activation drives well-differentiated liposarcoma. Proc Natl Acad Sci U S A 108(39):16386–16391CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nguyen AT et al (2012) An inducible kras(V12) transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis Model Mech 5(1):63–72CrossRefPubMedGoogle Scholar
  19. 19.
    Neumann JC et al (2011) Mutation in the type IB bone morphogenetic protein receptor Alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc Natl Acad Sci U S A 108(32):13153–13158CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Howe K et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hwang WY et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hruscha A et al (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140(24):4982–4987CrossRefPubMedGoogle Scholar
  23. 23.
    Suster ML et al (2009) Transgenesis in zebrafish with the tol2 transposon system. Methods Mol Biol 561:41–63CrossRefPubMedGoogle Scholar
  24. 24.
    Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97(21):11403–11408CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Novakovic B (1994) U.S. childhood cancer survival, 1973–1987. Med Pediatr Oncol 23(6):480–486CrossRefPubMedGoogle Scholar
  26. 26.
    Martin EA et al (2012) Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy. Sci Transl Med 4(162):162CrossRefGoogle Scholar
  27. 27.
    Kawahara G et al (2011) Drug screening in a zebrafish model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 108(13):5331–5336CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    North TE et al (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447(7147):1007–1011CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Amatruda JF et al (2002) Zebrafish as a cancer model system. Cancer Cell 1(3):229–231CrossRefPubMedGoogle Scholar
  30. 30.
    Lawrence MS et al (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505(7484):495–501CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kwan KM et al (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236(11):3088–3099CrossRefPubMedGoogle Scholar
  32. 32.
    Manoli M, Driever W (2012) Fluorescence-activated cell sorting (FACS) of fluorescently tagged cells from zebrafish larvae for RNA isolation. Cold Spring Harb Protoc 2012(8)Google Scholar
  33. 33.
    Moore JL et al (2002) Fixation and decalcification of adult zebrafish for histological, immunocytochemical, and genotypic analysis. Biotechniques 32(2):296–298PubMedGoogle Scholar
  34. 34.
    Scheer N, Campos-Ortega JA (1999) Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech Dev 80(2):153–158CrossRefPubMedGoogle Scholar
  35. 35.
    Asakawa K, Kawakami K (2008) Targeted gene expression by the Gal4-UAS system in zebrafish. Dev Growth Differ 50(6):391–399CrossRefPubMedGoogle Scholar
  36. 36.
    Kawakami K et al (2010) zTrap: zebrafish gene trap and enhancer trap database. BMC Dev Biol 10:105CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mosimann C et al (2011) Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 138(1):169–177CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Burger A et al (2014) A zebrafish model of chordoma initiated by notochord-driven expression of HRASV12. Dis Model Mech 7(7):907–913CrossRefPubMedGoogle Scholar
  39. 39.
    Amsterdam A et al (2004) Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2(5):E139CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jungke P, Hans S, Brand M (2013) The zebrafish CreZoo: an easy-to-handle database for novel CreER(T2)-driver lines. Zebrafish 10(3):259–263CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PediatricsUT Southwestern Medical CenterDallasUSA
  2. 2.Department of Molecular BiologyUT Southwestern Medical CenterDallasUSA
  3. 3.Department of Internal MedicineUT Southwestern Medical CenterDallasUSA

Personalised recommendations