Advertisement

Zebrafish pp 31-51 | Cite as

Homology-Independent Integration of Plasmid DNA into the Zebrafish Genome

  • Thomas O. Auer
  • Filippo Del Bene
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1451)

Abstract

Targeting nucleases like zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system have revolutionized genome-editing possibilities in many model organisms. They allow the generation of loss-of-function alleles by the introduction of double-strand breaks at defined sites within genes, but also more sophisticated genome-editing approaches have become possible. These include the integration of donor plasmid DNA into the genome by homology-independent repair mechanisms after CRISPR/Cas9-mediated cleavage. Here we present a protocol outlining the most important steps to target a genomic site and to integrate a donor plasmid at this defined locus.

Key words

Zebrafish CRISPR/Cas Targeted transgene integration Genome modification Genome editing Genome engineering Site-specific nuclease Homology-independent repair 

Notes

Acknowledgments

A special thanks to J. P. Concordet, K. Duroure, and A. De Cian for helping with the development and initial establishment of the homology-independent targeting strategy. We would like to thank J. Wittbrodt for scientific discussion and support and members of the Del Bene lab for general discussion and comments. The Del Bene lab “Neural Circuits Development” is part of the Laboratoire d’Excellence (LabEx) entitled DEEP (ANR-11-LABX-0044) and the Ecole des Neurosciences de Paris. T.O.A. was supported by a Boehringer Ingelheim Fonds Ph.D. fellowship. This work has been supported by ATIP/AVENIR program starting grant (FDB), ERC-StG #311159 (FDB), CNRS, INSERM, and Institut Curie.

References

  1. 1.
    Walker C, Streisinger G (1983) Induction of mutations by gamma-rays in pregonial germ cells of zebrafish embryos. Genetics 103:125–136PubMedPubMedCentralGoogle Scholar
  2. 2.
    Chakrabarti S, Streisinger G, Singer F, Walker C (1983) Frequency of gamma-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, BRACHYDANIO RERIO. Genetics 103:109–123PubMedPubMedCentralGoogle Scholar
  3. 3.
    Lin S, Gaiano N, Culp P, Burns JC, Friedmann T, Yee JK, Hopkins N (1994) Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265:666–669CrossRefPubMedGoogle Scholar
  4. 4.
    Mullins MC, Hammerschmidt M, Haffter P, Nusslein-Volhard C (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4:189–202CrossRefPubMedGoogle Scholar
  5. 5.
    Solnica-Krezel L, Schier AF, Driever W (1994) Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136:1401–1420PubMedPubMedCentralGoogle Scholar
  6. 6.
    Amsterdam A, Hopkins N (1999) Retrovirus-mediated insertional mutagenesis in zebrafish. Methods Cell Biol 60:87–98CrossRefPubMedGoogle Scholar
  7. 7.
    Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46PubMedGoogle Scholar
  8. 8.
    Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36PubMedGoogle Scholar
  9. 9.
    Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97:11403–11408CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kawakami K (2004) Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element. Methods Cell Biol 77:201–222CrossRefPubMedGoogle Scholar
  11. 11.
    Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7:133–144CrossRefPubMedGoogle Scholar
  12. 12.
    Balciunas D, Ekker SC (2005) Trapping fish genes with transposons. Zebrafish 1:335–341CrossRefPubMedGoogle Scholar
  13. 13.
    Balciuniene J, Balciunas D (2013) Gene trapping using gal4 in zebrafish. J Vis Exp (79):e50113Google Scholar
  14. 14.
    Balciuniene J, Nagelberg D, Walsh KT, Camerota D, Georlette D, Biemar F, Bellipanni G, Balciunas D (2013) Efficient disruption of Zebrafish genes using a Gal4-containing gene trap. BMC Genomics 14:619CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Maddison LA, Li M, Chen W (2014) Conditional gene-trap mutagenesis in zebrafish. Methods Mol Biol 1101:393–411CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Maddison LA, Lu J, Chen W (2011) Generating conditional mutations in zebrafish using gene-trap mutagenesis. Methods Cell Biol 104:1–22CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ni TT, Lu J, Zhu M, Maddison LA, Boyd KL, Huskey L, Ju B, Hesselson D, Zhong TP, Page-McCaw PS et al (2012) Conditional control of gene function by an invertible gene trap in zebrafish. Proc Natl Acad Sci U S A 109:15389–15394CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Song G, Li Q, Long Y, Gu Q, Hackett PB, Cui Z (2012) Effective gene trapping mediated by Sleeping Beauty transposon. PLoS One 7:e44123CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Song G, Li Q, Long Y, Hackett PB, Cui Z (2012) Effective expression-independent gene trapping and mutagenesis mediated by Sleeping Beauty transposon. J Genet Genomics 39:503–520CrossRefPubMedGoogle Scholar
  20. 20.
    Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T, Chi NC, Asakawa K, Kawakami K, Baier H (2007) Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods 4:323–326PubMedGoogle Scholar
  21. 21.
    le Trinh A, Fraser SE (2013) Enhancer and gene traps for molecular imaging and genetic analysis in zebrafish. Develop Growth Differ 55:434–445CrossRefGoogle Scholar
  22. 22.
    Balciunas D, Davidson AE, Sivasubbu S, Hermanson SB, Welle Z, Ekker SC (2004) Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genomics 5:62CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Parinov S, Kondrichin I, Korzh V, Emelyanov A (2004) Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 231:449–459CrossRefPubMedGoogle Scholar
  24. 24.
    Choo BG, Kondrichin I, Parinov S, Emelyanov A, Go W, Toh WC, Korzh V (2006) Zebrafish transgenic Enhancer TRAP line database (ZETRAP). BMC Dev Biol 6:5CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kondrychyn I, Teh C, Garcia-Lecea M, Guan Y, Kang A, Korzh V (2011) Zebrafish enhancer TRAP transgenic line database ZETRAP 2.0. Zebrafish 8:181–182CrossRefPubMedGoogle Scholar
  26. 26.
    Suster ML, Abe G, Schouw A, Kawakami K (2011) Transposon-mediated BAC transgenesis in zebrafish. Nat Protoc 6:1998–2021CrossRefPubMedGoogle Scholar
  27. 27.
    Bussmann J, Schulte-Merker S (2011) Rapid BAC selection for tol2-mediated transgenesis in zebrafish. Development 138:4327–4332CrossRefPubMedGoogle Scholar
  28. 28.
    Suster ML, Sumiyama K, Kawakami K (2009) Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics 10:477CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700CrossRefPubMedGoogle Scholar
  32. 32.
    Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, Joung JK, Sander JD, Peterson RT, Yeh JR (2012) Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res 40:8001–8010CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ (2012) Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8:e1002861CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Moore FE, Reyon D, Sander JD, Martinez SA, Blackburn JS, Khayter C, Ramirez CL, Joung JK, Langenau DM (2012) Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS One 7:e37877CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh J-RJ, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110:13904–13909CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sung YH, Kim JM, Kim HT, Lee J, Jeon J, Jin Y, Choi JH, Ban YH, Ha SJ, Kim CH et al (2014) Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res 24(1):125–131CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gagnon JA, Valen E, Thyme SB, Huang P, Ahkmetova L, Pauli A, Montague TG, Zimmerman S, Richter C, Schier AF (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9:e98186CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Liu D, Wang Z, Xiao A, Zhang Y, Li W, Zu Y, Yao S, Lin S, Zhang B (2014) Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized cas9 and evaluation of off-targeting effect. J Genet Genomics 41:43–46CrossRefPubMedGoogle Scholar
  45. 45.
    Auer TO, Del Bene F (2014) CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 69(2):142–150CrossRefPubMedGoogle Scholar
  46. 46.
    Shin J, Chen J, Solnica-Krezel L (2014) Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development 141:3807–3818CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zu Y, Tong X, Wang Z, Liu D, Pan R, Li Z, Hu Y, Luo Z, Huang P, Wu Q et al (2013) TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10:329–331CrossRefPubMedGoogle Scholar
  48. 48.
    Irion U, Krauss J, Nusslein-Volhard C (2014) Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141:4827–4830CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kimura Y, Hisano Y, Kawahara A, Higashijima S (2014) Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep 4:6545CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Auer TO, Duroure K, Concordet JP, Del Bene F (2014) CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish. Nat Protoc 9:2823–2840CrossRefPubMedGoogle Scholar
  52. 52.
    Rembold M, Lahiri K, Foulkes NS, Wittbrodt J (2006) Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Protoc 1:1133–1139CrossRefPubMedGoogle Scholar
  53. 53.
    Westerfield M (ed) (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. University of Orgeon Press, OregonGoogle Scholar
  54. 54.
    Foley JE, Maeder ML, Pearlberg J, Joung JK, Peterson RT, Yeh JR (2009) Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat Protoc 4:1855–1867CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD, Joung JK, Peterson RT, Yeh JR (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8:e68708CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42:W401–W407CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Naito Y, Hino K, Bono H, Ui-Tei K (2014) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22:589–594CrossRefPubMedGoogle Scholar
  59. 59.
    Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc 2006Google Scholar
  60. 60.
    Di Donato V, Auer TO, Duroure K, Del Bene F (2013) Characterization of the calcium binding protein family in zebrafish. PLoS One 8:e53299CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Abe G, Suster ML, Kawakami K (2011) Tol2-mediated transgenesis, gene trapping, enhancer trapping, and the Gal4-UAS system. Methods Cell Biol 104:23–49CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuronal Circuit Development Group, Unité de Génétique et Biologie du Développement, U934/UMR3215, Pole de Biologie du Développement et CancerInstitut Curie—Centre de RechercheParis Cedex 05France
  2. 2.CNRS UMR 3215ParisFrance
  3. 3.INSERM U934ParisFrance
  4. 4.Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
  5. 5.Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland

Personalised recommendations