Skip to main content

Quantifying Aggressive Behavior in Zebrafish

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1451))

Abstract

Aggression is a complex behavior that influences social relationships and can be seen as adaptive or maladaptive depending on the context and intensity of expression. A model organism suitable for genetic dissection of the underlying neural mechanisms of aggressive behavior is still needed. Zebrafish has already proven to be a powerful vertebrate model organism for the study of normal and pathological brain function. Despite the fact that zebrafish is a gregarious species that forms shoals, when allowed to interact in pairs, both males and females express aggressive behavior and establish dominance hierarchies. Here, we describe two protocols that can be used to quantify aggressive behavior in zebrafish, using two different paradigms: (1) staged fights between real opponents and (2) mirror-elicited fights. We also discuss the methodology for the behavior analysis, the expected results for both paradigms, and the advantages and disadvantages of each paradigm in face of the specific goals of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baron RA, Richardson D (1994) Human aggression. Plenum Press, New York

    Google Scholar 

  2. Jones LJ, Norton WHJ (2015) Using zebrafish to uncover the genetic and neural basis of aggression, a frequent comorbid symptom of psychiatric disorders. Behav Brain Res 276:171–180

    Article  PubMed  Google Scholar 

  3. Goodson JL (2005) The vertebrate social behavior network: evolutionary themes and variations. Horm Behav 48:11–22

    Article  PubMed  PubMed Central  Google Scholar 

  4. O’Connell LA, Hofmann HA (2012) Evolution of a vertebrate social decision-making network. Science 336:1154–1157

    Article  PubMed  Google Scholar 

  5. Muto A, Ohkura M, Abe G et al (2013) Real-time visualization of neuronal activity during perception. Curr Biol 23:307–311

    Article  CAS  PubMed  Google Scholar 

  6. Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35:63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sivasubbu S, Balciunas D, Amsterdam A, Ekker SC (2007) Insertional mutagenesis strategies in zebrafish. Genome Biol 8:1–9

    Article  Google Scholar 

  8. Bill BR, Petzold AM, Clark KJ et al (2009) A primer for morpholino use in zebrafish. Zebrafish 6:69–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Higashijima S, Masino MA, Mandel G, Fetcho JR (2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 90:3986–3997

    Article  PubMed  Google Scholar 

  10. Douglass AD, Kraves S, Deisseroth K et al (2008) Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr Biol 18:1133–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawakami K, Abe G, Asada T et al (2010) zTrap: zebrafish gene trap and enhancer trap database. BMC Dev Biol 10:105

    Article  PubMed  PubMed Central  Google Scholar 

  12. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spence R, Gerlach G, Lawrence C, Smith C (2008) The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 83:13–34

    Article  PubMed  Google Scholar 

  14. Larson ET, O’Malley DM, Melloni RH (2006) Aggression and vasotocin are associated with dominant-subordinate relationships in zebrafish. Behav Brain Res 167:94–102

    Article  CAS  PubMed  Google Scholar 

  15. Oliveira RF, Silva JF, Simões JM (2011) Fighting zebrafish: characterization of aggressive behavior and winner-loser effects. Zebrafish 8:73–81

    Article  PubMed  Google Scholar 

  16. Paull GC, Filby AL, Giddins HG et al (2010) Dominance hierarchies in zebrafish (Danio rerio) and their relationship with reproductive success. Zebrafish 7:109–117

    Article  CAS  PubMed  Google Scholar 

  17. Oliveira RF, Carneiro LA, Canário AVM (2005) Behavioural endocrinology: no hormonal response in tied fights. Nature 437:207–208

    Article  CAS  PubMed  Google Scholar 

  18. Desjardins JK, Fernald RD (2010) What do fish make of mirror images? Biol Lett 6:744–747

    Article  PubMed  PubMed Central  Google Scholar 

  19. Teles MC, Dahlbom SJ, Winberg S, Oliveira RF (2013) Social modulation of brain monoamine levels in zebrafish. Behav Brain Res 253:17–24

    Article  CAS  PubMed  Google Scholar 

  20. Ariyomo TO, Watt PJ (2013) Aggression and sex differences in lateralization in the zebrafish. Anim Behav 86:617–622

    Article  Google Scholar 

  21. Rowland WJ (1999) Studying visual cues in fish behavior: a review of ethological techniques. Environ Biol Fish 56:285–305

    Article  Google Scholar 

  22. Hirschenhauser K, Wittek M, Johnston P, Möstl E (2008) Social context rather than behavioral output or winning modulates post-conflict testosterone responses in Japanese quail (Coturnix japonica). Physiol Behav 95:457–463

    Article  CAS  PubMed  Google Scholar 

  23. Oliveira RF, Simões JM, Teles MC, Oliveira CR, Becker JD, Lopes JS (2016) Assessment of fight outcome is needed to activate socially driven transcriptional changes in the zebrafish brain. Proc Natl Acad Sci 113:E654–661.

    Google Scholar 

  24. Patzner RA (1984) Individual tagging of small fish. Aquaculture 40:251–253

    Article  Google Scholar 

  25. Dahlbom SJ, Lagman D, Lundstedt-Enkel K et al (2011) Boldness predicts social status in zebrafish (Danio rerio). PLoS One 6:e23565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hohn C, Petrie-Hanson L (2013) Evaluation of visible implant elastomer tags in zebrafish (Danio rerio). Biol Open 2(12):1397–1401

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lawrence C (2007) The husbandry of zebrafish (Danio rerio): a review. Aquaculture 269:1–20

    Article  Google Scholar 

  28. Topic Popovic N, Strunjak-Perovic I, Coz-Rakovac R et al (2012) Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J Appl Ichthyol 28:553–564

    Article  CAS  Google Scholar 

  29. Balzarini V, Taborsky M, Wanner S et al (2014) Mirror, mirror on the wall: the predictive value of mirror tests for measuring aggression in fish. Behav Ecol Sociobiol 68:871–878

    Article  Google Scholar 

  30. Vignet C, Bégout M-L, Péan S et al (2013) Systematic screening of behavioral responses in two zebrafish strains. Zebrafish 10:365–375

    Article  PubMed  Google Scholar 

  31. Ross LG, Ross B (2008) Anaesthetic and sedative techniques for aquatic animals, 3rd edn. Blackwell, Oxford

    Book  Google Scholar 

  32. Dahlbom SJ, Backström T, Lundstedt-Enkel K, Winberg S (2012) Aggression and monoamines: effects of sex and social rank in zebrafish (Danio rerio). Behav Brain Res 228:333–338

    Article  CAS  PubMed  Google Scholar 

  33. Hurd PL (1997) Cooperative signalling between opponents in fish fights. Anim Behav 54(5):1309–1315

    Article  PubMed  Google Scholar 

  34. Elwood RW, Stoilova V, McDonnell A et al (2014) Do mirrors reflect reality in agonistic encounters? A test of mutual cooperation in displays. Anim Behav 97:63–67

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Nuno Marques Pereira for helpful discussions on the tagging procedure. The writing of this book chapter was supported by a grant from Fundação para a Ciência e a Tecnologia (FCT, EXCL/BIA-ANM/0549/2012). MCT is supported by a Ph.D. fellowship from FCT (SFRH/BD/44848/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui F. Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Teles, M.C., Oliveira, R.F. (2016). Quantifying Aggressive Behavior in Zebrafish. In: Kawakami, K., Patton, E., Orger, M. (eds) Zebrafish. Methods in Molecular Biology, vol 1451. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3771-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3771-4_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3769-1

  • Online ISBN: 978-1-4939-3771-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics