Skip to main content

Studying Lipid Metabolism and Transport During Zebrafish Development

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1451))

Abstract

The zebrafish model facilitates the study of lipid metabolism and transport during development. Here, we outline methods to introduce traceable fluorescent or radiolabeled fatty acids into zebrafish embryos and larvae at various developmental stages. Labeled fatty acids can be injected into the large yolk cell prior to the development of digestive organs when the larvae is entirely dependent on the yolk for its nutrition (lecithotrophic state). Once zebrafish are able to consume exogenous food, labeled fatty acids can be incorporated into their food. Our group and others have demonstrated that the transport and processing of these injected or ingested fatty acid analogs can be followed through microscopy and/or biochemical analysis. These techniques can be easily combined with targeted antisense approaches, transgenics, or drug treatments (see Note 1 ), allowing studies of lipid cell biology and metabolism that are exceedingly difficult or impossible in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer UE et al (2014) Prevention of chronic disease in the 21st century: elimination of the leading preventable causes of premature death and disability in the USA. Lancet 384(9937):45–52

    Article  PubMed  Google Scholar 

  2. Joffe BI, Panz VR, Raal FJ (2001) From lipodystrophy syndromes to diabetes mellitus. Lancet 357(9266):1379–1381

    Article  CAS  PubMed  Google Scholar 

  3. McNeely MJ et al (2001) Lipoprotein and apolipoprotein abnormalities in familial combined hyperlipidemia: a 20-year prospective study. Atherosclerosis 159(2):471–481

    Article  CAS  PubMed  Google Scholar 

  4. Watanabe S et al (2008) Liver diseases and metabolic syndrome. J Gastroenterol 43(7):509–518

    Article  CAS  PubMed  Google Scholar 

  5. Flegal KM et al (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303(3):235–241

    Article  CAS  PubMed  Google Scholar 

  6. Ogden CL et al (2010) Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA 303(3):242–249

    Article  CAS  PubMed  Google Scholar 

  7. Anderson JL, Carten JD, Farber SA (2011) Zebrafish lipid metabolism: from mediating early patterning to the metabolism of dietary fat and cholesterol. Methods Cell Biol 101:111–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Asaoka Y et al (2013) The expanding role of fish models in understanding non-alcoholic fatty liver disease. Dis Model Mech 6(4):905–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fang L, Liu C, Miller YI (2014) Zebrafish models of dyslipidemia: relevance to atherosclerosis and angiogenesis. Transl Res 163(2):99–108

    Article  CAS  PubMed  Google Scholar 

  10. Holtta-Vuori M et al (2010) Zebrafish: gaining popularity in lipid research. Biochem J 429(2):235–242

    Article  PubMed  Google Scholar 

  11. Schlegel A, Stainier DY (2007) Lessons from “lower” organisms: what worms, flies, and zebrafish can teach us about human energy metabolism. PLoS Genet 3(11):e199

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carten JD, Bradford MK, Farber SA (2011) Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish. Dev Biol 360(2):276–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clifton JD et al (2010) Identification of novel inhibitors of dietary lipid absorption using zebrafish. PLoS One 5(8):e12386

    Article  PubMed  PubMed Central  Google Scholar 

  14. Farber SA et al (2001) Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292(5520):1385–1388

    Article  CAS  PubMed  Google Scholar 

  15. Hama K et al (2009) In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters. Am J Physiol Gastrointest Liver Physiol 296(2):G445–G453

    Article  CAS  PubMed  Google Scholar 

  16. Schlegel A, Stainier DY (2006) Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae. Biochemistry 45(51):15179–15187

    Article  CAS  PubMed  Google Scholar 

  17. Miyares RL, de Rezende VB, Farber SA (2014) Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism. Dis Model Mech 7(7):915–927

    Article  PubMed  PubMed Central  Google Scholar 

  18. Babin PJ et al (1997) Both apolipoprotein E and A-I genes are present in a nonmammalian vertebrate and are highly expressed during embryonic development. Proc Natl Acad Sci U S A 94(16):8622–8627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marza E et al (2005) Developmental expression and nutritional regulation of a zebrafish gene homologous to mammalian microsomal triglyceride transfer protein large subunit. Dev Dyn 232(2):506–518

    Article  CAS  PubMed  Google Scholar 

  20. Poupard G et al (2000) Apolipoprotein E gene expression correlates with endogenous lipid nutrition and yolk syncytial layer lipoprotein synthesis during fish development. Cell Tissue Res 300(2):251–261

    Article  CAS  PubMed  Google Scholar 

  21. Otis JP et al (2015) Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis Model Mech 8(3):295–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Semova I et al (2012) Microbiota regulate intestinal absorption and metabolism of Fatty acids in the zebrafish. Cell Host Microbe 12(3):277–288

    Article  CAS  PubMed  Google Scholar 

  23. Bligh EG and Dyer WJ (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8):911–7

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. James Walters and Juliana Carten for the initial development of the fluorescent liposome feeding assay; Dr. Rosa Miyares and Jennifer Anderson for the initial development of the oil injection technique; Drs. Juliana Carten, Rosa Miyares, and Vitor deRezende for the initial exploration into the use of radiolabeled fatty acids and lipids in zebrafish metabolic assays; and Mahmud Siddiqi for his technical support with microscopy. This work was supported in part by the National Institute of Diabetes and Digestive and Kidney (NIDDK) [grant numbers RO1DK093399 to S.A.F., RO1GM63904 to The Zebrafish Functional Genomics Consortium (Stephen Ekker and S.A.F.)]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health (NIH). Additional support for this work was provided by the Carnegie Institution for Science endowment and the G. Harold and Leila Y. Mathers Charitable Foundation to the laboratory of S.A.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Farber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zeituni, E.M., Farber, S.A. (2016). Studying Lipid Metabolism and Transport During Zebrafish Development. In: Kawakami, K., Patton, E., Orger, M. (eds) Zebrafish. Methods in Molecular Biology, vol 1451. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3771-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3771-4_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3769-1

  • Online ISBN: 978-1-4939-3771-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics