Skip to main content

Zebrafish: An Animal Model to Study Nicotinic Drugs on Spatial Memory and Visual Attention

  • Protocol
  • First Online:
Nicotinic Acetylcholine Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 117))

  • 642 Accesses

Abstract

Neuronal nicotinic acetylcholine receptors (nAChRs) are involved in learning and memory in both humans and animals. For their physical characteristics, including small size, easiness to grow, and robustness of the species, zebrafish (Danio rerio) is rapidly becoming a popular model in bio-behavioral studies. Zebrafish are also easy to manipulate for researchers who are not practical users of traditional animal models. Here we describe two cognitive tasks which are sensitive to nicotinic drugs in a similar manner as rodents. Spatial memory is studied using a T-maze apparatus, where animals choose between two arms one of which contains a reservoir that offers a favorable habitat. Each fish receives two training trials at an interval of 24 h. The difference between the running time taken to reach the reservoir (and stay for at least 20 s) obtained during the first and the second trial is a measure of memory of the spatial location of reward. Visual attention is studied using a virtual object recognition test (VORT) where two geometrical 2D virtual shapes are presented stationary on two iPod screens. Shape recognition is scored in terms of exploration time whenever the zebrafish approach to the iPod area and direct their heads towards the shapes. To elucidate the involvement of nicotinic subtype receptors on memory, different selective nAChRs compounds (agonists and antagonists) are given through intraperitoneal (i.p.) route. All the compounds are tested also on swimming behavior to ascertain their possible interference with motor function. Here, we propose zebrafish as a useful tool to rapidly screen new nicotinic compounds active on cognitive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouger PC, van der Staay FJ (2005) Rats with scopolamine- or MK-801-induced spatial discrimination deficits in the cone field task: animal models for impaired spatial orientation performance. Eur Neuropsychopharmacol 15(3):331–346

    Article  CAS  PubMed  Google Scholar 

  2. Klinkenberg I, Blokland A (2010) The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev 34(8):1307–1350

    Article  CAS  PubMed  Google Scholar 

  3. World Health Organization (2012) Dementia: a public health priority. Alzheimer’s Disease International, London, http://apps.who.int/iris/bitstream/10665/75263/1/9789241564458_eng.pdf?ua=1

    Google Scholar 

  4. Hagerman RJ (2006) Lessons from fragile X regarding neurobiology, autism, and neurodegeneration. J Dev Behav Pediatr 27(1):63–74

    Article  PubMed  Google Scholar 

  5. Scerif G, Steele A (2011) Neurocognitive development of attention across genetic syndromes: inspecting a disorder’s dynamics through the lens of another. Prog Brain Res 189:285–301

    Article  PubMed  Google Scholar 

  6. Keehn B et al (2013) Functional connectivity in the first year of life in infants at-risk for autism: a preliminary near-infrared spectroscopy study. Front Hum Neurosci 7:444

    Article  PubMed  PubMed Central  Google Scholar 

  7. Court J, Martin-Ruiz C, Piggott M et al (2001) Nicotinic receptor abnormalities in Alzheimer disease. Biol Psychiatry 49:175–184

    Article  CAS  PubMed  Google Scholar 

  8. Mulugeta E et al (2003) Loss of muscarinic M4 receptors in hippocampus of Alzheimer patients. Brain Res 960(1–2):259–262

    Article  CAS  PubMed  Google Scholar 

  9. Araya JA et al (2014) Modulation of neuronal nicotinic receptor by quinolizidine alkaloids causes neuroprotection on a cellular Alzheimer model. J Alzheimers Dis 42(1):143–155

    CAS  PubMed  Google Scholar 

  10. Barten DM, Albright CF (2008) Therapeutic strategies for Alzheimer’s disease. Mol Neurobiol 37(2–3):171–186

    Article  CAS  PubMed  Google Scholar 

  11. Salas C et al (2006) Neuropsychology of learning and memory in teleost fish. Zebrafish 3(2):157–171

    Article  PubMed  Google Scholar 

  12. Hsieh DJ, Liao CF (2002) Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia. Br J Pharmacol 137(6):782–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Papke RL, Ono F, Stokes C, Urban JM, Boyd RT (2012) The nicotinic acetylcholine receptors of zebrafish and an evaluation of pharmacological tools used for their study. Biochem Pharmacol 84(3):352–365

    Google Scholar 

  14. Bilotta J et al (2005) Assessing appetitive choice discrimination learning in zebrafish. Zebrafish 2(4):259–268

    Article  PubMed  Google Scholar 

  15. Pather S, Gerlai R (2009) Shuttle box learning in zebrafish (Danio rerio). Behav Brain Res 196(2):323–327

    Article  PubMed  Google Scholar 

  16. Blank M et al (2009) A one-trial inhibitory avoidance task to zebrafish: rapid acquisition of an NMDA-dependent long-term memory. Neurobiol Learn Mem 92(4):529–534

    Article  CAS  PubMed  Google Scholar 

  17. Perry RJ, Hodges JR (1996) Spectrum of memory dysfunction in degenerative disease. Curr Opin Neurol 9(4):281–285

    Google Scholar 

  18. Cognato GD et al (2012) Y-Maze memory task in zebrafish (Danio rerio): the role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiol Learn Mem 98(4):321–328

    Article  CAS  Google Scholar 

  19. Grella SL, Kapur N, Gerlai R (2010) A Y-maze choice task fails to detect alcohol avoidance or alcohol preference in zebrafish. Int J Comp Psychol 23:26–42

    Google Scholar 

  20. Colwill RM et al (2005) Visual discrimination learning in zebrafish (Danio rerio). Behav Processes 70(1):19–31

    Article  PubMed  Google Scholar 

  21. Ninkovic J, Bally-Cuif L (2006) The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39(3):262–274

    Article  CAS  PubMed  Google Scholar 

  22. Avdesh A et al (2012) Evaluation of color preference in zebrafish for learning and memory. J Alzheimers Dis 28(2):459–469

    PubMed  Google Scholar 

  23. Braida D et al (2014) Role of neuronal nicotinic acetylcholine receptors (nAChRs) on learning and memory in zebrafish. Psychopharmacology (Berl) 231(9):1975–1985

    Article  CAS  Google Scholar 

  24. Saili KS et al (2012) Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish. Toxicology 291(1–3):83–92

    Article  CAS  PubMed  Google Scholar 

  25. Perry RJ, Watson P, Hodges JR (2000) The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer's disease: relationship to episodic and semantic memory impairment. Neuropsychologia 38(3):252–271

    Article  CAS  PubMed  Google Scholar 

  26. Keilp JG et al (2008) Attention deficit in depressed suicide attempters. Psychiatry Res 159(1–2):7–17

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lyon L, Saksida LM, Bussey TJ (2012) Spontaneous object recognition and its relevance to schizophrenia: a review of findings from pharmacological, genetic, lesion and developmental rodent models. Psychopharmacology (Berl) 220(4):647–672

    Article  CAS  Google Scholar 

  28. Echevarria DJ, Jouandot DJ, Toms CN (2011) Assessing attention in the zebrafish: are we there yet? Prog Neuropsychopharmacol Biol Psychiatry 35(6):1416–1420

    Article  PubMed  Google Scholar 

  29. Braida D et al (2014) A new model to study visual attention in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 55:80–86

    Article  PubMed  Google Scholar 

  30. Kalueff AV et al (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10(1):70–86

    Article  PubMed  PubMed Central  Google Scholar 

  31. Braida D et al (2012) Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish. Psychopharmacology (Berl) 220(2):319–330

    Article  CAS  Google Scholar 

  32. Braida D et al (2007) Hallucinatory and rewarding effect of salvinorin A in zebrafish: kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology (Berl) 190(4):441–448

    Article  CAS  Google Scholar 

  33. Kinkel MD et al (2010) Intraperitoneal injection into adult zebrafish. J Vis Exp 42

    Google Scholar 

  34. Gaikwad S et al (2011) Acute stress disrupts performance of zebrafish in the cued and spatial memory tests: the utility of fish models to study stress-memory interplay. Behav Processes 87(2):224–230

    Article  PubMed  Google Scholar 

  35. Levin ED, Chen E (2004) Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol 26(6):731–735

    Article  CAS  PubMed  Google Scholar 

  36. Swain HA, Sigstad C, Scalzo FM (2004) Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol Teratol 26(6):725–729

    Article  CAS  PubMed  Google Scholar 

  37. Hahn B et al (2003) Attentional effects of nicotinic agonists in rats. Neuropharmacology 44(8):1054–1067

    Article  CAS  PubMed  Google Scholar 

  38. Bitner RS et al (2010) In vivo pharmacological characterization of a novel selective alpha 7 neuronal nicotinic acetylcholine receptor agonist abt-107: preclinical considerations in Alzheimer’s disease. J Pharmacol Exp Ther 334(3):875–886

    Article  CAS  PubMed  Google Scholar 

  39. Howe WM et al (2010) Enhancement of attentional performance by selective stimulation of alpha 4 beta 2*nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacology 35(6):1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Castner SA et al (2011) Immediate and sustained improvements in working memory after selective stimulation of alpha 7 nicotinic acetylcholine receptors. Biol Psychiatry 69(1):12–18

    Article  CAS  PubMed  Google Scholar 

  41. Lendvai B et al (1996) Differential mechanisms involved in the effect of nicotinic agonists DMPP and lobeline to release [H-3]5-HT from rat hippocampal slices. Neuropharmacology 35(12):1769–1777

    Article  CAS  PubMed  Google Scholar 

  42. Levin ED (2011) Zebrafish assessment of cognitive improvement and anxiolysis: filling the gap between in vitro and rodent models for drug development. Rev Neurosci 22(1):75–84

    Google Scholar 

  43. Eddins D et al (2009) Nicotine effects on learning in zebrafish: the role of dopaminergic systems. Psychopharmacology (Berl) 202(1–3):103–109

    Article  CAS  Google Scholar 

  44. Levin ED, McClernon FJ, Rezvani AH (2006) Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl) 184(3–4):523–539

    Google Scholar 

  45. Sala M et al (2013) CC4, a dimer of cytisine, is a selective partial agonist at alpha 4 beta 2/alpha 6 beta 2 nAChR with improved selectivity for tobacco smoking cessation. Br J Pharmacol 168(4):835–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl) 138(3–4):217–230

    Google Scholar 

  47. Yu LL et al (2006) Cognitive aging in zebrafish. PLoS One 1(1):e14

    Article  PubMed  PubMed Central  Google Scholar 

  48. Grossman L et al (2011) Effects of piracetam on behavior and memory in adult zebrafish. Brain Res Bull 85(1–2):58–63

    Article  CAS  PubMed  Google Scholar 

  49. Cheung E, Chatterjee D, Gerlai R (2014) Subcutaneous dye injection for marking and identification of individual adult zebrafish (Danio rerio) in behavioral studies. Behav Res Methods 46(3):619–624

    Article  PubMed  Google Scholar 

  50. Cameron DJ, Rassamdana F, Tam P, Dang K, Yanez C, Ghaemmaghami S, Dehkordi MI (2013) The optokinetic response as a quantitative measure of visual acuity in zebrafish. J Vis Exp 80:50832. doi:10.3791/50832

  51. Ponzoni L et al (2014) The cytisine derivatives, CC4 and CC26, reduce nicotine-induced conditioned place preference in zebrafish by acting on heteromeric neuronal nicotinic acetylcholine receptors. Psychopharmacology (Berl) 231(24):4681–4693

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariaelvina Sala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Luisa, P., Sala, M., Braida, D. (2016). Zebrafish: An Animal Model to Study Nicotinic Drugs on Spatial Memory and Visual Attention. In: Li, M. (eds) Nicotinic Acetylcholine Receptor Technologies. Neuromethods, vol 117. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3768-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3768-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3766-0

  • Online ISBN: 978-1-4939-3768-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics