Advertisement

Approaches for Investigating Transporter Endocytic Trafficking in Cell Lines and Native Preparations

  • Haley E. MelikianEmail author
  • Sijia Wu
  • Luke R. Gabriel
Protocol
Part of the Neuromethods book series (NM, volume 118)

Abstract

Neurotransmitter transporters are key determinants of synaptic strength and studies over the past two decades have clearly demonstrated that compromised transporter function, either via genetic manipulation or intrinsic to neuropsychiatric disorders, has a profound impact on behavior and synaptic homeostasis. Transporters are dynamically regulated by numerous intracellular signaling pathways, many of which acutely alter transporter plasma membrane expression via endocytic trafficking. Given the importance of transport function in synaptic function, copious attention has been devoted to understanding the molecular mechanisms governing transporter cell surface stability. In this chapter, we provide a comprehensive overview of the available methods used to probe constitutive and regulated transporter endocytic trafficking both in cultured cells and ex vivo brain slices. Detailed protocols are provided and both the advantages and limitations of the various methodologies are considered.

Key words

Transport Reuptake Trafficking Endocytosis Regulation 

References

  1. 1.
    Blakely RD, Edwards RH (2012) Vesicular and plasma membrane transporters for neurotransmitters. Cold Spring Harb Perspect Biol 4(2):pii: a005595CrossRefGoogle Scholar
  2. 2.
    Kristensen AS, Andersen J, Jorgensen TN et al (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63:585–640CrossRefPubMedGoogle Scholar
  3. 3.
    Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13–25CrossRefPubMedGoogle Scholar
  4. 4.
    Nirenberg MJ, Chan J, Pohorille A et al (1997) The dopamine transporter: comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens. J Neurosci 17:6899–6907PubMedGoogle Scholar
  5. 5.
    Nirenberg MJ, Chan J, Vaughan RA et al (1997) Immunogold localization of the dopamine transporter: an ultrastructural study of the rat ventral tegmental area. J Neurosci 17:4037–4044PubMedGoogle Scholar
  6. 6.
    Nirenberg MJ, Vaughan RA, Uhl GR et al (1996) The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 16:436–447PubMedGoogle Scholar
  7. 7.
    Melikian HE (2004) Neurotransmitter transporter trafficking: endocytosis, recycling, and regulation. Pharmacol Ther 104:17–27CrossRefPubMedGoogle Scholar
  8. 8.
    Robinson MB (2002) Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J Neurochem 80:1–11CrossRefPubMedGoogle Scholar
  9. 9.
    Gulley JM, Zahniser NR (2003) Rapid regulation of dopamine transporter function by substrates, blockers and presynaptic receptor ligands. Eur J Pharmacol 479:139–152CrossRefPubMedGoogle Scholar
  10. 10.
    Zahniser NR, Sorkin A (2004) Rapid regulation of the dopamine transporter: role in stimulant addiction? Neuropharmacology 47(Suppl 1):80–91CrossRefPubMedGoogle Scholar
  11. 11.
    Gether U, Andersen PH, Larsson OM et al (2006) Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci 27:375–383CrossRefPubMedGoogle Scholar
  12. 12.
    Zahniser NR, Sorkin A (2009) Trafficking of dopamine transporters in psychostimulant actions. Semin Cell Dev Biol 20:411–417CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Barwick KE, Wright J, Al-Turki S et al (2012) Defective presynaptic choline transport underlies hereditary motor neuropathy. Am J Hum Genet 91:1103–1107CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sakrikar D, Mazei-Robison MS, Mergy MA et al (2012) Attention deficit/hyperactivity disorder-derived coding variation in the dopamine transporter disrupts microdomain targeting and trafficking regulation. J Neurosci 32:5385–5397CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Boudanova E, Navaroli DM, Melikian HE (2008) Amphetamine-induced decreases in dopamine transporter surface expression are protein kinase C-independent. Neuropharmacology 54:605–612CrossRefPubMedGoogle Scholar
  16. 16.
    Johnson LA, Furman CA, Zhang M et al (2005) Rapid delivery of the dopamine transporter to the plasmalemmal membrane upon amphetamine stimulation. Neuropharmacology 49:750–758CrossRefPubMedGoogle Scholar
  17. 17.
    Saunders C, Ferrer JV, Shi L et al (2000) Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci U S A 97:6850–6855CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sorkina T, Caltagarone J, Sorkin A (2013) Flotillins regulate membrane mobility of the dopamine transporter but are not required for its protein kinase C dependent endocytosis. Traffic 14:709–724CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Boudanova E, Navaroli DM, Stevens Z et al (2008) Dopamine transporter endocytic determinants: carboxy terminal residues critical for basal and PKC-stimulated internalization. Mol Cell Neurosci 39:211–217CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sorkina T, Hoover BR, Zahniser NR et al (2005) Constitutive and protein kinase C-induced internalization of the dopamine transporter is mediated by a clathrin-dependent mechanism. Traffic 6:157–170CrossRefPubMedGoogle Scholar
  21. 21.
    Holton KL, Loder MK, Melikian HE (2005) Nonclassical, distinct endocytic signals dictate constitutive and PKC-regulated neurotransmitter transporter internalization. Nat Neurosci 8:881–888CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Loder MK, Melikian HE (2003) The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines. J Biol Chem 278:22168–22174CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sorkina T, Richards TL, Rao A et al (2009) Negative regulation of dopamine transporter endocytosis by membrane-proximal N-terminal residues. J Neurosci 29:1361–1374CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wu S, Bellve KD, Fogarty KE et al (2015) Ack1 is a dopamine transporter endocytic brake that rescues a trafficking-dysregulated ADHD coding variant. Proc Natl Acad Sci U S A 112:15480–15485CrossRefPubMedGoogle Scholar
  25. 25.
    Melikian HE, Buckley KM (1999) Membrane trafficking regulates the activity of the human dopamine transporter. J Neurosci 19:7699–7710PubMedGoogle Scholar
  26. 26.
    Daniels GM, Amara SG (1999) Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters. J Biol Chem 274:35794–35801CrossRefPubMedGoogle Scholar
  27. 27.
    Sorkina T, Miranda M, Dionne KR et al (2006) RNA interference screen reveals an essential role of Nedd4-2 in dopamine transporter ubiquitination and endocytosis. J Neurosci 26:8195–8205CrossRefPubMedGoogle Scholar
  28. 28.
    Eriksen J, Rasmussen SG, Rasmussen TN et al (2009) Visualization of dopamine transporter trafficking in live neurons by use of fluorescent cocaine analogs. J Neurosci 29:6794–6808CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rao A, Simmons D, Sorkin A (2011) Differential subcellular distribution of endosomal compartments and the dopamine transporter in dopaminergic neurons. Mol Cell Neurosci 46:148–158CrossRefPubMedGoogle Scholar
  30. 30.
    Cremona ML, Matthies HJG, Pau K et al (2011) Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT. Nat Neurosci 14:469–477CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Miranda M, Sorkina T, Grammatopoulos TN et al (2004) Multiple molecular determinants in the carboxyl terminus regulate dopamine transporter export from endoplasmic reticulum. J Biol Chem 279:30760–30770CrossRefPubMedGoogle Scholar
  32. 32.
    Farhan H, Korkhov VM, Paulitschke V et al (2004) Two discontinuous segments in the carboxy terminus are required for membrane targeting of the rat GABA transporter-1 (GAT1). J Biol Chem 276:28553–28563CrossRefGoogle Scholar
  33. 33.
    Farhan H, Reiterer V, Korkhov VM et al (2007) Concentrative export from the endoplasmic reticulum of the gamma-aminobutyric acid transporter 1 requires binding to SEC24D. J Biol Chem 282:7679–7689CrossRefPubMedGoogle Scholar
  34. 34.
    Farhan H, Reiterer V, Kriz A et al (2008) Signal-dependent export of GABA transporter 1 from the ER-Golgi intermediate compartment is specified by a C-terminal motif. J Cell Sci 121:753–761CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Reiterer V, Maier S, Sitte HH et al (2008) Sec24- and ARFGAP1-dependent trafficking of GABA transporter-1 is a prerequisite for correct axonal targeting. J Neurosci 28:12453–12464CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    El-Kasaby A, Just H, Malle E et al (2010) Mutations in the carboxyl-terminal SEC24 binding motif of the serotonin transporter impair folding of the transporter. J Biol Chem 285:39201–39210CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sucic S, El-Kasaby A, Kudlacek O et al (2011) The serotonin transporter is an exclusive client of the coat protein complex II (COPII) component SEC24C. J Biol Chem 286:16482–16490CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sucic S, Koban F, El-Kasaby A et al (2013) Switching the clientele: a lysine residing in the C terminus of the serotonin transporter specifies its preference for the coat protein complex II component SEC24C. J Biol Chem 288:5330–5341CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Torres GE, Yao WD, Mohn AR et al (2001) Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron 30:121–134CrossRefPubMedGoogle Scholar
  40. 40.
    Bjerggaard C, Fog JU, Hastrup H et al (2004) Surface targeting of the dopamine transporter involves discrete epitopes in the distal C terminus but does not require canonical PDZ domain interactions. J Neurosci 24:7024–7036CrossRefPubMedGoogle Scholar
  41. 41.
    Madsen KL, Thorsen TS, Rahbek-Clemmensen T et al (2012) Protein interacting with C kinase 1 (PICK1) reduces reinsertion rates of interaction partners sorted to Rab11-dependent slow recycling pathway. J Biol Chem 287:12293–12308CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Carneiro AM, Ingram SL, Beaulieu J-M et al (2002) The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter. J Neurosci 22:7045–7054PubMedGoogle Scholar
  43. 43.
    Fog JU, Khoshbouei H, Holy M et al (2006) Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51:417–429CrossRefGoogle Scholar
  44. 44.
    Navaroli DM, Stevens ZH, Uzelac Z et al (2011) The plasma membrane-associated GTPase Rin interacts with the dopamine transporter and is required for protein kinase C-regulated dopamine transporter trafficking. J Neurosci 31:13758–13770CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wei Y, Williams JM, Dipace C et al (2007) Dopamine transporter activity mediates amphetamine-induced inhibition of Akt through a Ca2+/calmodulin-dependent kinase II-dependent mechanism. Mol Pharmacol 71:835–842CrossRefPubMedGoogle Scholar
  46. 46.
    Speed NK, Matthies HJ, Kennedy JP et al (2010) Akt-dependent and isoform-specific regulation of dopamine transporter cell surface expression. ACS Chem Neurosci 1:476–481CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Stöckli J, Fazakerley DJ, James DE (2011) GLUT4 exocytosis. J Cell Sci 124:4147–4159CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    St Pierre CA, Leonard D, Corvera S et al (2011) Antibodies to cell surface proteins redirect intracellular trafficking pathways. Exp Mol Pathol 91:723–732CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Tampellini D, Magrane J, Takahashi RH et al (2007) Internalized antibodies to the Abeta domain of APP reduce neuronal Abeta and protect against synaptic alterations. J Biol Chem 282:18895–18906CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Haley E. Melikian
    • 1
    Email author
  • Sijia Wu
    • 1
  • Luke R. Gabriel
    • 1
  1. 1.Department of Psychiatry, Brudnick Neuropsychiatric Research InstituteUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations