Experimental Data Guided Docking of Small Molecules into Homology Models of Neurotransmitter Transporters

  • Andreas Jurik
  • Amir Seddik
  • Gerhard F. EckerEmail author
Part of the Neuromethods book series (NM, volume 118)


Docking of small molecules into proteins is a key process in structure-based drug design. It helps to derive binding hypotheses and is a standard tool for structure-based virtual screening. However, in case there are no high resolution structures of the protein of interest available, the results obtained require careful validation. In this chapter we present a workflow for experimental data guided docking of small molecules into protein homology models of neurotransmitter transporter.

Key words

Neurotransmitter transporter GABA transporter Ligand docking Scoring function GAT1 SERT DAT 



We gratefully acknowledge financial support provided by the Austrian Science Fund, grant F3502.


  1. 1.
    Richter L, de Graaf C, Sieghart W et al (2012) Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Nat Chem Biol 8:455–464CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Klepsch F, Chiba P, Ecker GF (2011) Exhaustive sampling of docking poses reveals binding hypotheses for propafenone type inhibitors of P-glycoprotein. PLoS Comput Biol 7:e1002036CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sarker S, Weissensteiner R, Steiner I et al (2010) The high-affinity binding site for tricyclic antidepressants resides in the outer vestibule of the serotonin transporter. Mol Pharmacol 78:1026–1035CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Saha K, Partilla JS, Lehner KR et al (2015) “Second generation” mephedrone analogs, 4-MEC and 4-MePPP, differently affect monoamine transporter function. Neuropsychopharmacology 40:1321–1331CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Neudorfer C, Seddik A, Shanab K et al (2015) Synthesis and in silico evaluation of novel reference compounds for PET based investigations of the norepinephrine transporter. Molecules 20:1712–1730CrossRefPubMedGoogle Scholar
  6. 6.
    Jurik A, Zdrazil B, Holy M et al (2015) A binding mode hypothesis of tiagabine confirms liothyronine effect on γ-aminobutyric acid transporter 1 (GAT1). J Med Chem 58:2149–2158CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748CrossRefPubMedGoogle Scholar
  8. 8.
    Lovell SC, Word JM, Richardson JS et al (2000) The penultimate rotamer library. Proteins 40:389–408CrossRefPubMedGoogle Scholar
  9. 9.
    XLSTAT statistical add-in for Microsoft Excel, Addinsoft, 28 West 27th Street, Suite 503, New York, NY 10001, United States;
  10. 10.
    Molecular Operating Environment (MOE) version 2012.10 (2012) Chemical Computing Group Inc., 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7Google Scholar
  11. 11.
    Schrödinger, 8910 University Center Lane, Suite 270, San Diego, CA 92122;
  12. 12.
    Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718CrossRefGoogle Scholar
  13. 13.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefPubMedGoogle Scholar
  14. 14.
    Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci 34:1000–1008CrossRefGoogle Scholar
  15. 15.
    LigPrep, version 2.5 (2011) Schrödinger, LLC, New York, NYGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Pharmaceutical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations