Using High-Speed Chronoamperometry to Measure Biogenic Amine Release and Uptake In Vivo

  • Lynette C. DawsEmail author
  • W. Anthony Owens
  • Glenn M. Toney
Part of the Neuromethods book series (NM, volume 118)


Here, we describe the method of high-speed chronoamperometry and its application for measuring release and clearance of biogenic amine neurotransmitters (serotonin, dopamine, and norepinephrine) in the intact and living mammalian brain. Chronoamperometry belongs to a family of electrochemical techniques collectively known as voltammetry, the only techniques currently available for “real-time” measurement of neurotransmitter transporter activity in vivo. Because of the small size of recording electrodes (<30 μm) and the relatively rapid sampling rate (sub-second), these techniques can be used to quantify release and clearance kinetics for biogenic amines in discrete brain regions. Chronoamperometry has been effectively used to study the impact of drugs, various environmental influences (e.g. stress), the estrous cycle, and age, among other stimuli, on the function of biogenic amine transporters in vivo.

A major part of performing high-speed chronoamperometry is the preparatory work, including fabricating and calibrating carbon fiber electrodes, creating electrode-micropipette assemblies and stereotaxically implanting them in brain. Details for all steps are provided here, including how to histologically verify electrode placement at the conclusion of recordings. Chronoamperometry provides a unique window to “view” biogenic amine transporter function in the living animal.

Key words

Chronoamperometry In vivo electrochemistry Carbon fiber electrode Serotonin Dopamine Norepinephrine Biogenic amine transporters 



Studies described herein were funded in part by NIH grants MH64489, MH093320, MH106978, DA18992, and DA014684 to L.C.D. and NIH grants HL102310 and HL088052 to G.M.T. The authors gratefully acknowledge Lester Rosebrock for photography.


  1. 1.
    Kissinger PT, Hart JB, Adams RN (1973) Voltammetry in brain tissue: a new neurophysiological measurement. Brain Res 55:209–213CrossRefPubMedGoogle Scholar
  2. 2.
    Cottrell FG (1902) Z Physik Chem 42:385Google Scholar
  3. 3.
    Gerhardt GA, Oke AF, Nagy G et al (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res 290:390–394CrossRefPubMedGoogle Scholar
  4. 4.
    Gerhardt GA, Hoffman A (2001) Effects of recording media composition on the response of Nafion-coated carbon fiber microelectrodes measured using high-speed chronoamperometry. J Neurosci Methods 109:13–21CrossRefPubMedGoogle Scholar
  5. 5.
    Crespi F, Sharp T, Maidment N et al (1983) Differential pulse voltammetry in vivo evidence that uric acid contributes to the indole oxidation peak. Neurosci Lett 43:203–207CrossRefPubMedGoogle Scholar
  6. 6.
    Crespi F, Garratt JC, Sleight AJ et al (1990) In vivo evidence that 5-hydroxytryptamine (5-HT) neuronal firing and release are not necessarily correlated with 5-HT metabolism. Neuroscience 35:139–144CrossRefPubMedGoogle Scholar
  7. 7.
    Cespuglio R, Sarda N, Gharib A et al (1986) Differential pulse voltammetry in vivo with working carbon fiber electrodes: 5-hydroxyindole compounds or uric acid detection? Exp Brain Res 64:589–595CrossRefPubMedGoogle Scholar
  8. 8.
    Rivot J-P, Cespuglio R, Puig S et al (1995) In vivo electrochemical monitoring of serotonin in spinal dorsal horn with nafion-coated multi-carbon fiber electrodes. J Neurochem 65:1257–1263CrossRefPubMedGoogle Scholar
  9. 9.
    Perez XA, Andrews AM (2005) Chronoamperometry to determine differential reductions in uptake in brain synaptosomes from serotonin transporter knockout mice. Anal Chem 77:818–826CrossRefPubMedGoogle Scholar
  10. 10.
    Bunin MA, Wightman RM (1998) Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci 18:4854–4860PubMedGoogle Scholar
  11. 11.
    Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171CrossRefPubMedGoogle Scholar
  12. 12.
    Cragg SJ, Rice ME (2004) DAncing past the DAT at a DA synapse. Trends Neurosci 27:270–277CrossRefPubMedGoogle Scholar
  13. 13.
    Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San DiegoGoogle Scholar
  14. 14.
    Gulley JM, Doolen S, Zahniser NR (2002) Brief, repeated exposure to substrates down-regulates dopamine transporter function in Xenopus oocytes in vitro and rat dorsal striatum in vivo. J Neurochem 83:400–411CrossRefPubMedGoogle Scholar
  15. 15.
    Gulley JM, Zahniser NR (2003) Rapid regulation of dopamine transporter function by substrates, blockers and presynaptic receptor ligands. Eur J Pharmacol 479:139–152CrossRefPubMedGoogle Scholar
  16. 16.
    Blakely RD, Ramamoorthy S, Schroeter S et al (1998) Regulated phosphorylation and trafficking of antidepressant-sensitive serotonin transporter proteins. Biol Psychiatry 44:169–178CrossRefPubMedGoogle Scholar
  17. 17.
    Blakely RD, Bauman AL (2000) Biogenic amine transporters: regulation in flux. Curr Opin Neurobiol 10:328–336CrossRefPubMedGoogle Scholar
  18. 18.
    Ramamoorthy S, Blakely RD (1999) Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 285:763–766CrossRefPubMedGoogle Scholar
  19. 19.
    Daws LC, Toney GM, Davis DJ et al (1997) In vivo chronoamperometric measurements of extracellular serotonin clearance in the rat dentate gyrus. J Neurosci Methods 78:139–150CrossRefPubMedGoogle Scholar
  20. 20.
    Daws LC, Toney GM, Gerhardt GA et al (1998) In vivo chronoamperometric measures of extracellular serotonin clearance in rat dorsal hippocampus: Contributions of serotonin and norepinephrine transporters. J Pharmacol Exp Ther 286:967–976PubMedGoogle Scholar
  21. 21.
    Daws LC, Callaghan PD, Morón J et al (2002) Cocaine increases dopamine uptake and cell surface expression of dopamine transporters. Biochem Biophy Res Commun 290:1545–1550CrossRefGoogle Scholar
  22. 22.
    Daws LC, Montañez S, Owens WA et al (2005) Transport mechanisms governing clearance in vivo revealed by high-speed chronoamperometry. J Neurosci Methods 143:49–62CrossRefPubMedGoogle Scholar
  23. 23.
    Daws LC, Montañez S, Munn L et al (2006) Ethanol inhibits clearance of brain serotonin by a serotonin transporter independent mechanism. J Neurosci 26:6431–6438CrossRefPubMedGoogle Scholar
  24. 24.
    Daws LC, Toney GM (2007) Voltammetric methods to study kinetics and mechanisms for serotonin clearance in vivo. In: Michael AC, Simon SA, Nicolelis MAL (eds) Electrochemical methods in neuroscience, for Methods and new frontiers in neuroscience. CRC, Boca RatonGoogle Scholar
  25. 25.
    Baganz NL, Horton RE, Calderon AS et al (2008) Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin transporter deficient mice. Proc Natl Acad Sci U S A 105:18976–18981CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wiedholz L, Owens WA, Horton RE et al (2008) Mice lacking the AMPA GluR1 receptor exhibit hyperdopaminergia and “schizophrenia-related” behaviors. Mol Psychiatry 13:631–640CrossRefPubMedGoogle Scholar
  27. 27.
    Baganz NL, Horton RE, Martin KP et al (2010) Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: organic cation transporter 3, the smoking gun. J Neurosci 30:15185–15195CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Horton RE, Apple DM, Owens WA et al (2013) Decynium-22 enhances SSRI-induced antidepressant effects in mice: uncovering novel targets to treat depression. J Neurosci 33:10534–10543CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Garcia-Olivares J, Torres-Salazar D, Owens WA et al (2013) Inhibition of dopamine transporter activity by a direct interaction with G protein βγ subunits. PLoS One 8(3):e59788CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Montañez S, Munn JL, Owens WA et al (2014) 5-HT1B receptor modulation of the serotonin transporter in vivo: studies using KO mice. Neurochem Int 73:127–131CrossRefPubMedGoogle Scholar
  31. 31.
    Hoffman AF, Gerhardt GA (1999) Differences in pharmacological properties of dopamine release between substantia nigra and striatum: an in vivo electrochemical study. J Pharmacol Exp Ther 289:455–463PubMedGoogle Scholar
  32. 32.
    Callaghan PD, Irvine RJ, Daws LC (2005) Differences in the in vivo dynamics of neurotransmitter release and serotonin uptake after acute para-methoxyamphetamine and 3,4-methylenedioxymethamphetamine revealed by chronoamperometry. Neurochem Int 47:350–361CrossRefPubMedGoogle Scholar
  33. 33.
    Fog JU, Khoshbouei H, Holy M et al (2006) Calmodulin kinase II interacts with the dopamine transporter C-terminus to regulate amphetamine-induced reverse transport. Neuron 51:417–429CrossRefPubMedGoogle Scholar
  34. 34.
    Williams JM, Owens WA, Turner GH et al (2007) Hypoinsulinemia regulates amphetamine-induced reverse transport of dopamine. PLoS Biol 5:2369–2378CrossRefGoogle Scholar
  35. 35.
    Robertson SD, Matthies HJG, Owens WA et al (2010) Insulin signaling regulation of norepinephrine transporter (NET) surface availability and function, reveals Akt as a novel and potent regulator of the transporter. J Neurosci 30:11305–11316CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Speed N, Owens WA, Saada S et al (2011) Diet-induced changes in insulin signalling regulates the trafficking and function of the dopamine transporter. PLoS Biol 6(9):e25169–e25169Google Scholar
  37. 37.
    Owens WA, Williams JM, Saunders C et al (2012) Rescue of dopamine transporter function in hypoinsulinemic rats by a D2 receptor-ERK dependent mechanism. J Neurosci 32:2637–3647CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rickhag M, Owens WA, Winkler M-T et al (2013) Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release. J Biol Chem 288:27534–27544CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sabeti J, Adams CE, Burmeister J et al (2002) Kinetic analysis of striatal clearance of exogenous dopamine recorded by chronoamperometry in freely-moving rats. J Neurosci Methods 121:41–52CrossRefPubMedGoogle Scholar
  40. 40.
    Jackson BP, Dietz SM, Wightman RM (1995) Fast-scan cyclic voltammetry of 5-hydroxtryptamine. Anal Chem 67:1115–1120CrossRefPubMedGoogle Scholar
  41. 41.
    Jackson BP, Wightman RM (1995) Dynamics of 5-hydroxytryptamine released from dopamine neurons in the caudate putamen of the rat. Brain Res 674:163–166CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lynette C. Daws
    • 1
    Email author
  • W. Anthony Owens
    • 1
  • Glenn M. Toney
    • 1
  1. 1.Department of PhysiologyUniversity of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations