Skip to main content

Tracer Flux Measurements to Study Outward Transport by Monoamine Neurotransmitter Transporters

  • Protocol
  • First Online:
Neurotransmitter Transporters

Abstract

The physiological role of neurotransmitter transporter (NTT) proteins is the reuptake of released neurotransmitter from the synaptic cleft. NTTs accomplish uptake by undergoing a transport cycle, which relies on a return step in the empty state. In addition, NTTs can also run in the reverse direction and transport substrates out of the cells. This can be observed under conditions, where the transmembrane sodium gradient dissipates, e.g., if sodium accumulates within the cell. This reverse transport mode is also induced by amphetamines and the exact mechanism underlying the amphetamine action is still enigmatic and involves complex regulatory processes. In the current chapter, we describe various methods that can be used to assess the efflux of neurotransmitter from cells heterologously expressing the NTTs of interest or from preparations derived from intact brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iversen LL (1971) Role of transmitter uptake mechanisms in synaptic neurotransmission. Br J Pharmacol 41:571–591

    Article  CAS  PubMed  Google Scholar 

  2. Rudnick G, Clark J (1993) From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters. Biochim Biophys Acta 1144:249–263

    Article  CAS  PubMed  Google Scholar 

  3. Kristensen AS, Andersen J, Jorgensen TN et al (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63:585–640

    Article  CAS  PubMed  Google Scholar 

  4. Nelson N (1998) The family of Na+/Cl− neurotransmitter transporters. J Neurochem 71:1785–1803

    Article  CAS  PubMed  Google Scholar 

  5. Iversen L (2000) Neurotransmitter transporters: fruitful targets for CNS drug discovery. Mol Psychiatry 5:357–362

    Article  CAS  PubMed  Google Scholar 

  6. Axelrod J, Whitby LG, Hertting G (1961) Effect of psychotropic drugs on the uptake of 3 H-Norepinephrine by tissues. Science 133:383–384

    Article  CAS  PubMed  Google Scholar 

  7. Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:969–970

    Article  CAS  PubMed  Google Scholar 

  8. Singh SK, Piscitelli CL, Yamashita A et al (2008) A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322:1655–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh SK, Yamashita A, Gouaux E (2007) Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 448:952–956

    Article  CAS  PubMed  Google Scholar 

  10. Yamashita A, Singh SK, Kawate T et al (2005) Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 437:215–223

    Article  CAS  PubMed  Google Scholar 

  11. Forrest LR, Rudnick G (2009) The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda) 24:377–386

    Article  CAS  Google Scholar 

  12. Forrest LR, Zhang YW, Jacobs MT et al (2008) Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci U S A 105:10338–10343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Penmatsa A, Gouaux E (2014) How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters. J Physiol 592:863–869

    Article  CAS  PubMed  Google Scholar 

  14. Shi L, Quick M, Zhao Y et al (2008) The mechanism of a neurotransmitter:sodium symporter—inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol Cell 30:667–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao Y, Terry D, Shi L et al (2010) Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465:188–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao Y, Terry DS, Shi L et al (2011) Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature 474:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barger G, Dale HH (1910) Chemical structure and sympathomimetic action of amines. J Physiol 41:19–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tainter ML, Chang DK (1927) The antagonism of sympathetic and adrenaline content of the spleen, kidney, and salivary glands in the sheep. J Pharmacol Exp Ther 30:193–207

    CAS  Google Scholar 

  19. Furchgott RF, Kirpekar SM, Rieker M et al (1963) Actions and interactions of norepinephrine, tyramine and cocaine on aortic strips of rabbit and left atria of guinea pig and cat. J Pharmacol Exp Ther 142:39–58

    CAS  PubMed  Google Scholar 

  20. Ross SB, Kelder D (1977) Efflux of 5-hydroxytryptamine from synaptosomes of rat cerebral cortex. Acta Physiol Scand 99:27–36

    Article  CAS  PubMed  Google Scholar 

  21. Glowinski J, Axelrod J (1965) Effect of drugs on the uptake, release, and metabolism of H3-norepinephrine in the rat brain. J Pharmacol Exp Ther 149:43–49

    CAS  PubMed  Google Scholar 

  22. Agneter E, Sitte HH, Stockl-Hiesleitner S et al (1995) Sustained dopamine release induced by secretoneurin in the striatum of the rat: a microdialysis study. J Neurochem 65:622–625

    Article  CAS  PubMed  Google Scholar 

  23. Gainetdinov RR, Fumagalli F, Jones SR et al (1997) Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter. J Neurochem 69:1322–1325

    Article  CAS  PubMed  Google Scholar 

  24. Gainetdinov RR, Jones SR, Fumagalli F et al (1998) Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Brain Res Rev 26:148–153

    Article  CAS  PubMed  Google Scholar 

  25. Daws LC, Toney GM, Davis DJ et al (1997) In vivo chronoamperometric measurements of the clearance of exogenously applied serotonin in the rat dentate gyrus. J Neurosci Methods 78:139–150

    Article  CAS  PubMed  Google Scholar 

  26. Gobbi M, Frittoli E, Mennini T et al (1992) Releasing activities of d-fenfluramine and fluoxetine on rat hippocampal synaptosomes preloaded with [3H]serotonin. Naunyn Schmiedebergs Arch Pharmacol 345:1–6

    Article  CAS  PubMed  Google Scholar 

  27. Gobbi M, Funicello M, Gerstbrein K et al (2008) N,N-Dimethyl-thioamphetamine and methyl-thioamphetamine, two non-neurotoxic substrates of 5-HT transporters, have scant in vitro efficacy for the induction of transporter-mediated 5-HT release and currents. J Neurochem 105:1770–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gobbi M, Mennini T, Garattini S (1997) Mechanism of neurotransmitter release induced by amphetamine derivatives: pharmacological and toxicological aspects. Curr Top Pharmacol 3:217–227

    CAS  Google Scholar 

  29. Rothman RB, Baumann MH (2002) Serotonin releasing agents. Neurochemical, therapeutic and adverse effects. Pharmacol Biochem Behav 71:825–836

    Article  CAS  PubMed  Google Scholar 

  30. Rothman RB, Baumann MH (2003) Monoamine transporters and psychostimulant drugs. Eur J Pharmacol 479:23–40

    Article  CAS  PubMed  Google Scholar 

  31. Whittaker VP, Michaelson IA, Kirkland RJ (1964) The separation of synaptic vesicles from nerve-ending particles (‘synaptosomes’). Biochem J 90:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scholze P, Norregaard L, Singer E et al (2002) The role of zinc ions in reverse transport mediated by monoamine transporters. J Biol Chem 277:21505–21513

    Article  CAS  PubMed  Google Scholar 

  33. Eshleman AJ, Henningsen RA, Neve KA et al (1994) Release of dopamine via the human transporter. Mol Pharmacol 45:312–316

    CAS  PubMed  Google Scholar 

  34. Wall SC, Gu H, Rudnick G (1995) Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux. Mol Pharmacol 47:544–550

    CAS  Google Scholar 

  35. Pifl C, Agneter E, Drobny H et al (1999) Amphetamine reverses or blocks the operation of the human noradrenaline transporter depending on its concentration: superfusion studies on transfected cells. Neuropharmacology 38:157–165

    Article  CAS  PubMed  Google Scholar 

  36. Pifl C, Drobny H, Reither H et al (1995) Mechanism of the dopamine-releasing actions of amphetamine and cocaine: plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol Pharmacol 47:368–373

    CAS  PubMed  Google Scholar 

  37. Pifl C, Singer EA (1999) Ion dependence of carrier-mediated release in dopamine or norepinephrine transporter-transfected cells questions the hypothesis of facilitated exchange diffusion. Mol Pharmacol 56:1047–1054

    CAS  PubMed  Google Scholar 

  38. Seidel S, Singer E, Just H et al (2005) Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67:140–151

    CAS  PubMed  Google Scholar 

  39. Fog JU, Khoshbouei H, Holy M et al (2006) Calmodulin kinase ii interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51:417–429

    Article  CAS  PubMed  Google Scholar 

  40. Steinkellner T, Montgomery TR, Hofmaier T et al (2015) Amphetamine action at the cocaine- and antidepressant-sensitive serotonin transporter is modulated by alphaCaMKII. J Neurosci 35:8258–8271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steinkellner T, Mus L, Eisenrauch B et al (2014) In vivo amphetamine action is contingent on alphaCaMKII. Neuropsychopharmacology 39:2681–2693

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Steinkellner T, Yang JW, Montgomery TR et al (2012) Ca(2+)/calmodulin-dependent protein kinase IIalpha (alphaCaMKII) controls the activity of the dopamine transporter: implications for Angelman syndrome. J Biol Chem 287:29627–29635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rickhag M, Owens WA, Winkler M-T et al (2013) Membrane-permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release. J Biol Chem 288:27534–27544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Melikian HE, Buckley KM (1999) Membrane trafficking regulates the activity of the human dopamine transporter. J Neurosci 19:7699–7710

    CAS  PubMed  Google Scholar 

  45. Pifl C, Wolf A, Rebernik P et al (2009) Zinc regulates the dopamine transporter in a membrane potential and chloride dependent manner. Neuropharmacology 56:531–540

    Article  CAS  PubMed  Google Scholar 

  46. Foster JD, Yang J-W, Moritz AE et al (2012) Dopamine transporter phosphorylation site threonine 53 regulates substrate reuptake and amphetamine-stimulated efflux. J Biol Chem 287:29702–29712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moritz AE, Foster JD, Gorentla BK et al (2013) Phosphorylation of dopamine transporter serine 7 modulates cocaine analog binding. J Biol Chem 288:20–32

    Article  CAS  PubMed  Google Scholar 

  48. Buchmayer F, Schicker K, Steinkellner T et al (2013) Amphetamine actions at the serotonin transporter rely on the availability of phosphatidylinositol-4,5-bisphosphate. Proc Natl Acad Sci U S A 110:11642–11647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hamilton PJ, Belovich AN, Khelashvili G et al (2014) PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein. Nat Chem Biol 10:582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scholze P, Freissmuth M, Sitte H (2002) Mutations within an intramembrane leucine heptad repeat disrupt oligomer formation of the rat GABA transporter 1. J Biol Chem 277:43682–43690

    Article  CAS  PubMed  Google Scholar 

  51. Chiu CS, Jensen K, Sokolova I et al (2002) Number, density, and surface/cytoplasmic distribution of GABA transporters at presynaptic structures of knock-in mice carrying GABA transporter subtype 1-green fluorescent protein fusions. J Neurosci 22:10251–10266

    CAS  PubMed  Google Scholar 

  52. Loland CJ, Norregaard L, Litman T et al (2002) Generation of an activating Zn(2+) switch in the dopamine transporter: mutation of an intracellular tyrosine constitutively alters the conformational equilibrium of the transport cycle. Proc Natl Acad Sci U S A 99:1683–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meinild A, Sitte H, Gether U (2004) Zinc potentiates an uncoupled anion conductance associated with the dopamine transporter. J Biol Chem 279:49671–49679

    Article  CAS  PubMed  Google Scholar 

  54. Scholze P, Sitte H, Singer E (2001) Substantial loss of substrate by diffusion during uptake in HEK-293 cells expressing neurotransmitter transporters. Neurosci Lett 309:173–176

    Article  CAS  PubMed  Google Scholar 

  55. Rosenauer R, Luf A, Holy M et al (2013) A combined approach using transporter-flux assays and mass spectrometry to examine psychostimulant street drugs of unknown content. ACS Chem Neurosci 4:182–190

    Article  CAS  PubMed  Google Scholar 

  56. Baumann MH, Partilla JS, Lehner KR et al (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacology 38:552–562

    Article  CAS  PubMed  Google Scholar 

  57. Sitte HH, Freissmuth M (2010) The reverse operation of Na(+)/Cl(−)-coupled neurotransmitter transporters—why amphetamines take two to tango. J Neurochem 112:340–355

    Article  CAS  PubMed  Google Scholar 

  58. Mollenhauer HH, Morre DJ, Rowe LD (1990) Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochim Biophys Acta 1031:225–246

    Article  CAS  PubMed  Google Scholar 

  59. Sitte HH, Scholze P, Schloss P et al (2000) Characterization of carrier-mediated efflux in human embryonic kidney 293 cells stably expressing the rat serotonin transporter: a superfusion study. J Neurochem 74:1317–1324

    Article  CAS  PubMed  Google Scholar 

  60. Chattopadhyay A, Rukmini R, Mukherjee S (1996) Photophysics of a neurotransmitter: ionization and spectroscopic properties of serotonin. Biophys J 71:1952–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scholze P, Zwach J, Kattinger A et al (2000) Transporter-mediated release: a superfusion study on human embryonic kidney cells stably expressing the human serotonin transporter. J Pharmacol Exp Ther 293:870–878

    CAS  PubMed  Google Scholar 

  62. Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251

    Article  CAS  PubMed  Google Scholar 

  63. Courousse T, Gautron S (2015) Role of organic cation transporters (OCTs) in the brain. Pharmacol Ther 146:94–103

    Article  CAS  PubMed  Google Scholar 

  64. Cui M, Aras R, Christian WV et al (2009) The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci U S A 106:8043–8048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Iversen LL (1997) The uptake of catechol amines at high perfusion concentrations in the rat isolated heart: a novel catechol amine uptake process. 1964. Br J Pharmacol 120:267–282, discussion 264–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vialou V, Balasse L, Callebert J et al (2008) Altered aminergic neurotransmission in the brain of organic cation transporter 3-deficient mice. J Neurochem 106:1471–1482

    CAS  PubMed  Google Scholar 

  67. Kristufek D, Rudorfer W, Pifl C et al (2002) Organic cation transporter mRNA and function in the rat superior cervical ganglion. J Physiol 543:117–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Singer EA (1988) Transmitter release from brain slices elicited by single pulses: a powerful method to study presynaptic mechanisms. Trends Pharmacol Sci 9:274–276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Austrian Science Fund for continuous support (grant F35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald H. Sitte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Steinkellner, T. et al. (2016). Tracer Flux Measurements to Study Outward Transport by Monoamine Neurotransmitter Transporters. In: Bönisch, H., Sitte, H. (eds) Neurotransmitter Transporters. Neuromethods, vol 118. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3765-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3765-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3763-9

  • Online ISBN: 978-1-4939-3765-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics