Advertisement

In Vivo Imaging of Dopamine Metabolism and Dopamine Transporter Function in the Human Brain

  • Matthäus WilleitEmail author
  • Ana Popovic
  • Lucie Bartova
  • Ulrich Sauerzopf
  • Martin Bauer
  • Nicole Praschak-Rieder
Protocol
Part of the Neuromethods book series (NM, volume 118)

Abstract

Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging of the dopamine system allow quantifying specific targets in the living animal and human brain. These methods are thus of great importance for translational brain research and have made it possible to identify and measure neurochemical changes associated with psychiatric disorders for the first time in history. The following chapter focuses on PET and SPECT imaging of psychotic disorders and addresses methods suited for imaging changes in extracellular dopamine levels and their relationship to dopamine metabolism and dopamine transporter function. Specifically, the chapter describes imaging with radiolabeled dopamine precursors (such as [18F]DOPA) and the so-called “competition paradigms,” where a change in extracellular dopamine elicits changes in radioligand binding to dopamine D2/3 receptors. In addition to theoretical background, this chapter provides information on strengths and weaknesses as well as on practical aspects of these methods.

Key words

Dopamine DOPA Psychosis Schizophrenia Amphetamine PET SPECT [11C]-(+)-PHNO 

Notes

Acknowledgments

This work was supported by a grant (P23585) of the FWF Austrian Science Fund granted to M.W.

References

  1. 1.
    Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S (2012) The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry 69(8):776–786. doi: 10.1001/archgenpsychiatry.2012.169 CrossRefPubMedGoogle Scholar
  2. 2.
    Bauer M, Praschak-Rieder N, Kasper S, Willeit M (2012) Is dopamine neurotransmission altered in prodromal schizophrenia? A review of the evidence. Curr Pharm Des 18(12):1568–1579CrossRefPubMedGoogle Scholar
  3. 3.
    Wilson AA, McCormick P, Kapur S, Willeit M, Garcia A, Hussey D, Houle S, Seeman P, Ginovart N (2005) Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem 48(12):4153–4160. doi: 10.1021/jm050155n CrossRefPubMedGoogle Scholar
  4. 4.
    Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4(3 Pt 1):153–158. doi: 10.1006/nimg.1996.0066 CrossRefPubMedGoogle Scholar
  5. 5.
    Ginovart N, Willeit M, Rusjan P, Graff A, Bloomfield PM, Houle S, Kapur S, Wilson AA (2007) Positron emission tomography quantification of [11C]-(+)-PHNO binding in the human brain. J Cereb Blood Flow Metab 27(4):857–871. doi: 10.1038/sj.jcbfm.9600411 PubMedGoogle Scholar
  6. 6.
    Cumming P (2009) Imaging dopamine. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. 7.
    Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6(4):279–287. doi: 10.1006/nimg.1997.0303 CrossRefPubMedGoogle Scholar
  8. 8.
    Oldendorf WH, Szabo J (1976) Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am J Physiol 230(1):94–98PubMedGoogle Scholar
  9. 9.
    Kumakura Y, Cumming P, Vernaleken I, Buchholz HG, Siessmeier T, Heinz A, Kienast T, Bartenstein P, Grunder G (2007) Elevated [18F]fluorodopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study. J Neurosci 27(30):8080–8087. doi: 10.1523/JNEUROSCI.0805-07.2007 CrossRefPubMedGoogle Scholar
  10. 10.
    Schabram I, Henkel K, Mohammadkhani Shali S, Dietrich C, Schmaljohann J, Winz O, Prinz S, Rademacher L, Neumaier B, Felzen M, Kumakura Y, Cumming P, Mottaghy FM, Grunder G, Vernaleken I (2014) Acute and sustained effects of methylphenidate on cognition and presynaptic dopamine metabolism: an [18F]FDOPA PET study. J Neurosci 34(44):14769–14776. doi: 10.1523/JNEUROSCI.1560-14.2014 CrossRefPubMedGoogle Scholar
  11. 11.
    Hartvig P, Tedroff J, Lindner KJ, Bjurling P, Chang CW, Tsukada H, Watanabe Y, Langstrom B (1993) Positron emission tomographic studies on aromatic L-amino acid decarboxylase activity in vivo for L-dopa and 5-hydroxy-L-tryptophan in the monkey brain. J Neural Transm Gen Sect 94(2):127–135CrossRefPubMedGoogle Scholar
  12. 12.
    Bruck A, Aalto S, Nurmi E, Vahlberg T, Bergman J, Rinne JO (2006) Striatal subregional 6-[18F]fluoro-L-dopa uptake in early Parkinson’s disease: a two-year follow-up study. Mov Disord 21(7):958–963. doi: 10.1002/mds.20855 CrossRefPubMedGoogle Scholar
  13. 13.
    Hoshi H, Kuwabara H, Leger G, Cumming P, Guttman M, Gjedde A (1993) 6-[18F]fluoro-L-dopa metabolism in living human brain: a comparison of six analytical methods. J Cereb Blood Flow Metab 13(1):57–69. doi: 10.1038/jcbfm.1993.8 CrossRefPubMedGoogle Scholar
  14. 14.
    Ishiwata K, Kawamura K, Yanai K, Hendrikse NH (2007) In vivo evaluation of P-glycoprotein modulation of 8 PET radioligands used clinically. J Nucl Med 48(1):81–87PubMedGoogle Scholar
  15. 15.
    Lieberman JA, Kane JM, Alvir J (1987) Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology (Berl) 91(4):415–433CrossRefGoogle Scholar
  16. 16.
    Boileau I, Payer D, Chugani B, Lobo DS, Houle S, Wilson AA, Warsh J, Kish SJ, Zack M (2014) In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [(11)C]-(+)-PHNO. Mol Psychiatry 19(12):1305–1313. doi: 10.1038/mp.2013.163 CrossRefPubMedGoogle Scholar
  17. 17.
    Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160(1):13–23CrossRefPubMedGoogle Scholar
  18. 18.
    Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35(3):549–562. doi: 10.1093/schbul/sbp006, sbp006 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wong DF, Wagner HN Jr, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga CA, Broussolle EP, Ravert HT, Wilson AA, Toung JK, Malat J, Williams JA, O’Tuama LA, Snyder SH, Kuhar MJ, Gjedde A (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234(4783):1558–1563CrossRefPubMedGoogle Scholar
  20. 20.
    Kohler C, Hall H, Ogren SO, Gawell L (1985) Specific in vitro and in vivo binding of 3H-raclopride. A potent substituted benzamide drug with high affinity for dopamine D-2 receptors in the rat brain. Biochem Pharmacol 34(13):2251–2259CrossRefPubMedGoogle Scholar
  21. 21.
    Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231(4735):258–261CrossRefPubMedGoogle Scholar
  22. 22.
    Seeman P, Guan HC, Niznik HB (1989) Endogenous dopamine lowers the dopamine D2 receptor density as measured by [3H]raclopride: implications for positron emission tomography of the human brain. Synapse 3(1):96–97. doi: 10.1002/syn.890030113 CrossRefPubMedGoogle Scholar
  23. 23.
    Ross SB, Jackson DM (1989) Kinetic properties of the accumulation of 3H-raclopride in the mouse brain in vivo. Naunyn Schmiedebergs Arch Pharmacol 340(1):6–12PubMedGoogle Scholar
  24. 24.
    Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49(7):538–544CrossRefPubMedGoogle Scholar
  25. 25.
    Innis RB, Malison RT, al-Tikriti M, Hoffer PB, Sybirska EH, Seibyl JP, Zoghbi SS, Baldwin RM, Laruelle M, Smith EO et al (1992) Amphetamine-stimulated dopamine release competes in vivo for [123I]IBZM binding to the D2 receptor in nonhuman primates. Synapse 10(3):177–184. doi: 10.1002/syn.890100302 CrossRefPubMedGoogle Scholar
  26. 26.
    Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A 94(6):2569–2574CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Laruelle M, Iyer RN, al-Tikriti MS, Zea-Ponce Y, Malison R, Zoghbi SS, Baldwin RM, Kung HF, Charney DS, Hoffer PB, Innis RB, Bradberry CW (1997) Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse 25(1):1–14. doi: 10.1002/(SICI)1098-2396(199701)25:11::AID-SYN13.0.CO;2-H CrossRefPubMedGoogle Scholar
  28. 28.
    Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20(3):423–451CrossRefPubMedGoogle Scholar
  29. 29.
    Sun W, Ginovart N, Ko F, Seeman P, Kapur S (2003) In vivo evidence for dopamine-mediated internalization of D2-receptors after amphetamine: differential findings with [3H]raclopride versus [3H]spiperone. Mol Pharmacol 63(2):456–462CrossRefPubMedGoogle Scholar
  30. 30.
    Ginovart N, Wilson AA, Houle S, Kapur S (2004) Amphetamine pretreatment induces a change in both D2-Receptor density and apparent affinity: a [11C]raclopride positron emission tomography study in cats. Biol Psychiatry 55(12):1188–1194. doi: 10.1016/j.biopsych.2004.02.019 CrossRefPubMedGoogle Scholar
  31. 31.
    Ginovart N, Farde L, Halldin C, Swahn CG (1997) Effect of reserpine-induced depletion of synaptic dopamine on [11C]raclopride binding to D2-dopamine receptors in the monkey brain. Synapse 25(4):321–325. doi: 10.1002/(SICI)1098-2396(199704)25:4321::AID-SYN23.0.CO;2-C CrossRefPubMedGoogle Scholar
  32. 32.
    Laruelle M, D'Souza CD, Baldwin RM, Abi-Dargham A, Kanes SJ, Fingado CL, Seibyl JP, Zoghbi SS, Bowers MB, Jatlow P, Charney DS, Innis RB (1997) Imaging D2 receptor occupancy by endogenous dopamine in humans. Neuropsychopharmacology 17(3):162–174. doi: 10.1016/S0893-133X(97)00043-2 CrossRefPubMedGoogle Scholar
  33. 33.
    Narendran R, Slifstein M, Hwang DR, Hwang Y, Scher E, Reeder S, Martinez D, Laruelle M (2007) Amphetamine-induced dopamine release: duration of action as assessed with the D2/3 receptoragonist radiotracer (-)-N-[(11)C]propyl-norapomorphine ([11C]NPA) in an anesthetized nonhuman primate. Synapse 61(2):106–109. doi: 10.1002/syn.20346 CrossRefPubMedGoogle Scholar
  34. 34.
    Cardenas L, Houle S, Kapur S, Busto UE (2004) Oral D-amphetamine causes prolonged displacement of [11C]raclopride as measured by PET. Synapse 51(1):27–31. doi: 10.1002/syn.10282 CrossRefPubMedGoogle Scholar
  35. 35.
    Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27(9):1533–1539. doi: 10.1038/sj.jcbfm.9600493 CrossRefPubMedGoogle Scholar
  36. 36.
    Girgis RR, Xu X, Miyake N, Easwaramoorthy B, Gunn RN, Rabiner EA, Abi-Dargham A, Slifstein M (2011) In vivo binding of antipsychotics to D3 and D2 receptors: a PET study in baboons with [11C]-(+)-PHNO. Neuropsychopharmacology 36(4):887–895. doi: 10.1038/npp.2010.228 CrossRefPubMedGoogle Scholar
  37. 37.
    Gallezot JD, Zheng MQ, Lim K, Lin SF, Labaree D, Matuskey D, Huang Y, Ding YS, Carson RE, Malison RT (2014) Parametric imaging and test-retest variability of (1)(1)C-(+)-PHNO binding to D(2)/D(3) dopamine receptors in humans on the high-resolution research tomograph PET scanner. J Nucl Med 55(6):960–966. doi: 10.2967/jnumed.113.132928 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lee DE, Gallezot JD, Zheng MQ, Lim K, Ding YS, Huang Y, Carson RE, Morris ED, Cosgrove KP (2013) Test-retest reproducibility of [11C]-(+)-propyl-hexahydro-naphtho-oxazin positron emission tomography using the bolus plus constant infusion paradigm. Mol Imaging 12(2):77–82PubMedPubMedCentralGoogle Scholar
  39. 39.
    Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812CrossRefGoogle Scholar
  40. 40.
    Bishara D, Olofinjana O, Sparshatt A, Kapur S, Taylor D, Patel MX (2013) Olanzapine: a systematic review and meta-regression of the relationships between dose, plasma concentration, receptor occupancy, and response. J Clin Psychopharmacol 33(3):329–335. doi: 10.1097/JCP.0b013e31828b28d5 CrossRefPubMedGoogle Scholar
  41. 41.
    Tauscher J, Jones C, Remington G, Zipursky RB, Kapur S (2002) Significant dissociation of brain and plasma kinetics with antipsychotics. Mol Psychiatry 7(3):317–321. doi: 10.1038/sj.mp.4001009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Matthäus Willeit
    • 1
    Email author
  • Ana Popovic
    • 1
  • Lucie Bartova
    • 1
  • Ulrich Sauerzopf
    • 1
  • Martin Bauer
    • 1
    • 2
  • Nicole Praschak-Rieder
    • 1
  1. 1.Department of Psychiatry and PsychotherapyMedical University ViennaViennaAustria
  2. 2.Department of Clinical PharmacologyMedical University ViennaViennaAustria

Personalised recommendations