Advertisement

Animal Models for Depression and the Mode of Action of Neurotransmitter Transporter-Blocking Antidepressants

  • Deeba Khan
  • Marianne Ronovsky
  • Thomas Steinkellner
  • Michael Freissmuth
  • Harald H. Sitte
  • Daniela D. PollakEmail author
Protocol
Part of the Neuromethods book series (NM, volume 118)

Abstract

Major depressive disorder is a highly prevalent and devastating mental illness whose underlying pathomechanisms remain incompletely understood. Currently the most commonly used antidepressants block neurotransmitter transporters, i.e., the transporters for serotonin (SERT) and/or norepinephrine (NET); in addition, there are compounds which regulate transmitter release by targeting presynaptic autoreceptors for norepinephrine and serotonin. There is an unmet medical need, because some patients respond poorly to the existing treatments. Preclinical models are required to test potential new antidepressant compounds. These models must recapitulate at least some of the symptoms of depression in animals and allow for the quantification of treatment effects on depression-like behavior. Here we present the chronic mild stress model as a suitable paradigm for eliciting depression-like behavior in mice. We describe the procedures used to interrogate the model by quantifying the induced behavioral phenotype, the associated physiological alterations and their modulation by drug candidates.

Key words

Animal model Behavior Depression Neurotransmitter transporter Anhedonia 

Notes

Acknowledgements

The authors wish to thank the Austrian Science Fund for continuous support (grant F35).

References

  1. 1.
    Bromet E, Andrade LH, Hwang I et al (2011) Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 9:90CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alesci S, Martinez PE, Kelkar S et al (2005) Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab 90:2522–2530CrossRefPubMedGoogle Scholar
  3. 3.
    Cryan JF, Slattery DA (2007) Animal models of mood disorders: recent developments. Curr Opin Psychiatry 20:1–7CrossRefPubMedGoogle Scholar
  4. 4.
    Pollak DD, Rey CE, Monje FJ (2010) Rodent models in depression research: classical strategies and new directions. Ann Med 42:252–264CrossRefPubMedGoogle Scholar
  5. 5.
    Rupniak NM (2003) Animal models of depression: challenges from a drug development perspective. Behav Pharmacol 14:385–390PubMedGoogle Scholar
  6. 6.
    Bagot RC, Labonte B, Pena CJ et al (2014) Epigenetic signaling in psychiatric disorders: stress and depression. Dialogues Clin Neurosci 16:281–295PubMedPubMedCentralGoogle Scholar
  7. 7.
    Slavich GM, Irwin MR (2014) From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull 140:774–815CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Willner P, Towell A, Sampson D et al (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl) 93:358–364CrossRefGoogle Scholar
  9. 9.
    Lucca G, Comim CM, Valvassori SS et al (2008) Chronic mild stress paradigm reduces sweet food intake in rats without affecting brain derived neurotrophic factor protein levels. Curr Neurovasc Res 5:207–213CrossRefPubMedGoogle Scholar
  10. 10.
    Martin M, Ledent C, Parmentier M et al (2002) Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl) 159:379–387CrossRefGoogle Scholar
  11. 11.
    Monleon S, D'aquila P, Parra A et al (1995) Attenuation of sucrose consumption in mice by chronic mild stress and its restoration by imipramine. Psychopharmacology (Berl) 117:453–457CrossRefGoogle Scholar
  12. 12.
    Valverde O, Smadja C, Roques BP et al (1997) The attenuation of morphine-conditioned place preference following chronic mild stress is reversed by a CCKB receptor antagonist. Psychopharmacology (Berl) 131:79–85CrossRefGoogle Scholar
  13. 13.
    Azpiroz A, Fano E, Garmendia L et al (1999) Effects of chronic mild stress (CMS) and imipramine administration, on spleen mononuclear cell proliferative response, serum corticosterone level and brain norepinephrine content in male mice. Psychoneuroendocrinology 24:345–361CrossRefPubMedGoogle Scholar
  14. 14.
    Savalli G, Diao W, Schulz S et al (2015) Diurnal oscillation of amygdala clock gene expression and loss of synchrony in a mouse model of depression. Int J Neuropsychopharmacol 18:pii: pyu095CrossRefGoogle Scholar
  15. 15.
    Strekalova T, Spanagel R, Bartsch D et al (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29:2007–2017CrossRefPubMedGoogle Scholar
  16. 16.
    Forbes NF, Stewart CA, Matthews K et al (1996) Chronic mild stress and sucrose consumption: validity as a model of depression. Physiol Behav 60:1481–1484CrossRefPubMedGoogle Scholar
  17. 17.
    Papp M, Willner P, Muscat R (1991) An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology (Berl) 104:255–259CrossRefGoogle Scholar
  18. 18.
    Mineur YS, Belzung C, Crusio WE (2006) Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behav Brain Res 175:43–50CrossRefPubMedGoogle Scholar
  19. 19.
    Mineur YS, Prasol DJ, Belzung C et al (2003) Agonistic behavior and unpredictable chronic mild stress in mice. Behav Genet 33:513–519CrossRefPubMedGoogle Scholar
  20. 20.
    Pothion S, Bizot JC, Trovero F et al (2004) Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav Brain Res 155:135–146CrossRefPubMedGoogle Scholar
  21. 21.
    Pucilowski O, Overstreet DH, Rezvani AH et al (1993) Chronic mild stress-induced anhedonia: greater effect in a genetic rat model of depression. Physiol Behav 54:1215–1220CrossRefPubMedGoogle Scholar
  22. 22.
    Franceschelli A, Herchick S, Thelen C et al (2014) Sex differences in the chronic mild stress model of depression. Behav Pharmacol 25:372–383PubMedGoogle Scholar
  23. 23.
    Schweizer MC, Henniger MS, Sillaber I (2009) Chronic mild stress (CMS) in mice: of anhedonia, ‘anomalous anxiolysis’ and activity. PLoS One 4:e4326CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tang M, Lei J, Sun X et al (2013) Stress-induced anhedonia correlates with lower hippocampal serotonin transporter protein expression. Brain Res 1513:127–134CrossRefPubMedGoogle Scholar
  25. 25.
    Kalueff AV, Minasyan A, Keisala T et al (2006) Hair barbering in mice: implications for neurobehavioural research. Behav Processes 71:8–15CrossRefPubMedGoogle Scholar
  26. 26.
    Cheeta S, Broekkamp C, Willner P (1994) Stereospecific reversal of stress-induced anhedonia by mianserin and its (+)-enantiomer. Psychopharmacology (Berl) 116:523–528CrossRefGoogle Scholar
  27. 27.
    Cheeta S, Ruigt G, Van Proosdij J et al (1997) Changes in sleep architecture following chronic mild stress. Biol Psychiatry 41:419–427CrossRefPubMedGoogle Scholar
  28. 28.
    Matthews K, Forbes N, Reid IC (1995) Sucrose consumption as an hedonic measure following chronic unpredictable mild stress. Physiol Behav 57:241–248CrossRefPubMedGoogle Scholar
  29. 29.
    Muscat R, Papp M, Willner P (1992) Antidepressant-like effects of dopamine agonists in an animal model of depression. Biol Psychiatry 31:937–946CrossRefPubMedGoogle Scholar
  30. 30.
    Weissenburger J, Rush AJ, Giles DE et al (1986) Weight change in depression. Psychiatry Res 17:275–283CrossRefPubMedGoogle Scholar
  31. 31.
    Bergstrom A, Jayatissa MN, Thykjaer T et al (2007) Molecular pathways associated with stress resilience and drug resistance in the chronic mild stress rat model of depression: a gene expression study. J Mol Neurosci 33:201–215CrossRefPubMedGoogle Scholar
  32. 32.
    Vialou V, Robison AJ, Laplant QC et al (2010) DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat Neurosci 13:745–752CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mcguffin P, Alsabban S, Uher R (2011) The truth about genetic variation in the serotonin transporter gene and response to stress and medication. Br J Psychiatry 198:424–427CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Deeba Khan
    • 1
  • Marianne Ronovsky
    • 1
  • Thomas Steinkellner
    • 1
  • Michael Freissmuth
    • 2
  • Harald H. Sitte
    • 2
  • Daniela D. Pollak
    • 1
    Email author
  1. 1.Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
  2. 2.Center of Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaViennaAustria

Personalised recommendations